Literatura científica selecionada sobre o tema "Streaming videos"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Streaming videos".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Streaming videos"
Suriya, Aslam Y., e Dr S. B. Kishor Dr. S. B. Kishor. "Analytical Study of Streaming Videos". Indian Journal of Applied Research 3, n.º 8 (1 de outubro de 2011): 356–57. http://dx.doi.org/10.15373/2249555x/aug2013/112.
Texto completo da fonteLe, Hung T., Hai N. Nguyen, Nam Pham Ngoc, Anh T. Pham e Truong Cong Thang. "A Novel Adaptation Method for HTTP Streaming of VBR Videos over Mobile Networks". Mobile Information Systems 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/2920850.
Texto completo da fonteRuberg, Bonnie, e Amanda L. L. Cullen. "Feeling for an Audience". Digital Culture & Society 5, n.º 2 (1 de dezembro de 2019): 85–102. http://dx.doi.org/10.14361/dcs-2019-0206.
Texto completo da fonteJeong, JongBeom, Dongmin Jang, Jangwoo Son e Eun-Seok Ryu. "3DoF+ 360 Video Location-Based Asymmetric Down-Sampling for View Synthesis to Immersive VR Video Streaming". Sensors 18, n.º 9 (18 de setembro de 2018): 3148. http://dx.doi.org/10.3390/s18093148.
Texto completo da fonteExarchakos, George, Luca Druda, Vlado Menkovski e Antonio Liotta. "Network analysis on Skype end-to-end video quality". International Journal of Pervasive Computing and Communications 11, n.º 1 (7 de abril de 2015): 17–42. http://dx.doi.org/10.1108/ijpcc-08-2014-0044.
Texto completo da fonteWidyantara, I. Made Oka, Muhammad Audy Bazly e Ngurah Indra ER. "ADAPTIVE STREAMING OVER HTTP (DASH) UNTUK APLIKASI VIDEO STREAMING". Majalah Ilmiah Teknologi Elektro 14, n.º 2 (30 de dezembro de 2015): 18. http://dx.doi.org/10.24843/mite.2015.v14i02p04.
Texto completo da fontePan, Tung-Ming, Kuo-Chin Fan e Yuan-Kai Wang. "Object-Based Approach for Adaptive Source Coding of Surveillance Video". Applied Sciences 9, n.º 10 (16 de maio de 2019): 2003. http://dx.doi.org/10.3390/app9102003.
Texto completo da fonteWahl, Mary. "Full Stream Ahead: Designing a Collection Development Workflow for Streaming Video Content". Library Resources & Technical Services 61, n.º 4 (9 de outubro de 2017): 226. http://dx.doi.org/10.5860/lrts.61n4.226.
Texto completo da fonteSaputra, Indra, Harun Mukhtar e Januar Al Amien. "Analisis Perbandingan Performa Codec H.264 & H.265 Video Streaming Dari Segi Quality of Service". Jurnal CoSciTech (Computer Science and Information Technology) 2, n.º 1 (12 de junho de 2021): 9–13. http://dx.doi.org/10.37859/coscitech.v2i1.2190.
Texto completo da fonteGarcia, Henrique D., Mylène C. Q. Farias, Ravi Prakash e Marcelo M. Carvalho. "Statistical characterization of tile decoding time of HEVC-encoded 360° video". Electronic Imaging 2020, n.º 9 (26 de janeiro de 2020): 285–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.9.iqsp-285.
Texto completo da fonteTeses / dissertações sobre o assunto "Streaming videos"
Liu, Jiayi. "Multiple Live Videos Delivery in Underprovisioned Networks". Télécom Bretagne, 2013. http://www.telecom-bretagne.eu/publications/publication.php?idpublication=14166.
Texto completo da fonteThe proliferation of new devices (such as smartphones and tablets) promotes new multimedia services (e. G. User-generated live video broadcasting), as well as new streaming techniques (e. G. Rate-adaptive streaming). As a matter of fact, scientists observe a formidable, sustainable growth of Internet traffic related to video streaming. Yet, network infrastructures struggle to cope with this growth and it is now frequent that a delivery network is insufficiently provisioned. Such underprovisioning problem is more severe for live videos due to its real-time requirement. In this thesis, we focus on bandwidth efficient video delivery solutions for live streaming in underprovisioned video delivery networks. Specifically, we have two main contributions: (1) a user-generated live videos sharing system based on peer-to-peer (P2P) technique, and (2) a live rate-adaptive streaming system based on Content Delivery Network (CDN). First of all, we built an multioverlay P2P video sharing system which allows Internet users to broadcast their own live videos. Typically, such a system consists of multiple P2P live video streaming systems, and faces the problem of finding a suitable allocation of peer upload bandwidth. We designed various bandwidth allocation algorithms for this problem and showed how optimal solutions can be efficiently computed. Then, we studied the problem of delivering live rate-adaptive streams in the CDN. We identified a discretize streaming model for multiple live videos in modern CDNs. We formulated a general optimization problem through Integer Linear Programming (ILP) and showed that it is NP-complete. Further, we presented a fast, easy to implement, and near-optimal algorithm with approved approximation ratios for a specific scenario. This work is the first step towards streaming multiple live rate-adaptive videos in CDN and provides a fundamental theoretical basis for deeper investigation. Last, we further extended the discretized streaming model into an user-centric one which maximizes the overall satisfaction of an user population. Further, we presented a practical system, which efficiently utilizes CDN infrastructure to deliver live video streams to viewers in dynamic and large-scale CDNs. The benefits of our approaches on reducing the CDN infrastructure capacity is validated through a set of realistic trace-driven large-scale simulations. All in one, this thesis explores bandwidth efficient live video delivery solutions in underprovisioned delivery network for multiple streaming technologies. The aim is to maximally utilize the bandwidth of relay nodes (peers in P2P and forwarding equipments in CDN) to achieve an optimization goal
But, Jason. "A novel MPEG-1 partial encryption scheme for the purposes of streaming video". Monash University, Dept. of Electrical and Computer Systems Engineering, 2004. http://arrow.monash.edu.au/hdl/1959.1/9709.
Texto completo da fonteLin, Ching-Ping. "Streaming video for parental involvement education". CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2473.
Texto completo da fonteLang, Linda Sue. "An analysis of instructor streaming videos on the practice sets in the Accounting 1 online course at Chippewa Valley Technical College". Menomonie, WI : University of Wisconsin--Stout, 2004. http://www.uwstout.edu/lib/thesis/2004/2004langl.pdf.
Texto completo da fonteNair, Binu Muraleedharan. "Learning Latent Temporal Manifolds for Recognition and Prediction of Multiple Actions in Streaming Videos using Deep Networks". University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429532297.
Texto completo da fonteMACHADO, NETO Luiz Teixeira. "Avaliação da qualidade de vídeos transmitidos via vídeo streaming em ambientes residenciais". Universidade Federal de Campina Grande, 2015. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/593.
Texto completo da fonteMade available in DSpace on 2018-05-07T15:46:17Z (GMT). No. of bitstreams: 1 LUIZ TEIXEIRA MACHADO NETO - DISSERTAÇÃO PPGCC 2015..pdf: 936539 bytes, checksum: 75e4ab7774a9d4c965e23ec09254fc86 (MD5) Previous issue date: 2015-03-01
A utilização de serviços de streaming cresceu bastante nos últimos anos, por meio de sistemas como Youtube, Hulu, Netflix, Vimeo, etc. Utilizando o stream, os vídeos são transmitidos e exibidos em tempo real e em qualquer lugar do mundo por meio da internet. Muitosusuáriosdestessistemasosutilizamemsuaresidênciaondeébastante comumencontrarumaredesemfio(devidoàmobilidadequesepodealcançarpormeio deste tipo de rede). Apesar de mais mobilidade, uma rede sem fio está mais suscetível a interferências do que a rede cabeada e, por isso, um vídeo pode ter sua imagem degradada com mais facilidade. Neste trabalho, é avaliada a transmissão de vídeos via stream para descobrir se o vídeo realmente é degradado pela transmissão; se tipos de conteúdos diferentes afetam a qualidade do vídeo recebido; e se de acordo com o padrão de compressão utilizado, é possível observar melhorias na qualidade do vídeo recebido. Por meio de uma abordagem experimental com um design de experimentos fatorial completo, foram feitas transmissões de vídeos utilizando o H.264, o HEVC e o MPEG-4; padrões mais utilizados atualmente. Além de definir os padrões, foram definidas outras variáveis: porcentagem de ocupação do canal de transmissão (com o objetivo de avaliar a degradação dos vídeos de acordo com a competição que a rede está sofrendo); potência do sinal de transmissão (com o objetivo de avaliar o impacto da qualidade do sinal da rede no vídeo recebido); quantidade de movimento no vídeo (para avaliar se a quantidade de movimento que o vídeo exibe impacta na sua qualidade). Nos experimentos, foi utilizado um ambiente residencial que conta as interferências de outras redes, exatamente como pode acontecer em um ambiente real. Para definir as porcentagens de ocupação, foram realizados experimentos para medição da capacidade máxima de transmissão da rede de testes. Em se tratando da quantidade de movimento, foi necessário fazer uma classificação prévia dos vídeos de acordo com características espaciais e temporais de cada vídeo. Os vídeos foram separados em três categorias e dentro dessas categorias, três vídeos foram escolhidos aleatoriamente para participar dos experimentos. Os resultados mostram que o HEVC obteveamelhormédiaparaasmétricasdequalidadedevídeoescolhidas, sendoocodec que menos perde qualidade numa transmissão sem fio. Também foi possível observar que a quantidade de movimento foi o parâmetro que mais influenciou na qualidade do vídeos nos experimentos realizados.
The use of streaming services has grown significantly in recent years, through systems such as Youtube, Hulu, Netflix, Vimeo, etc. Using the stream, videos are transmitted and displayed in real time and from anywhere in the world via the Internet. Many users of these systems use the same in their homes where it is quite common to find a wireless network (due to the mobility we can achieve through this type of computer network). In spite of having more mobility, a wireless network is more susceptible to interference than the wired network so a video can have its picture degraded more easily just because it is transmitted over a wireless network. We evaluate the transmission of videos via stream to find out whether the video is actually degraded by transmission; if different types of content affect the quality of the received video; and if there are compression standarts (H.264 and MPEG-4 HEVC, the most currently used) which ensure a better received video quality. Through an experimental approach with a design of full factorial experiments, several transmissions of videos were made in the three chosen standarts. In addition to defining the standarts, other variables were defined as: transmission channel occupancy percentage (in order to evaluate the degradation of videos according to occupation); power transmission signal (in order to assess the impact of network signal quality in the video received); amount of motion in the video (to evaluate whether the amount of motion the video displays impacts on its quality). For the experiments we used a residential environment that has all the interference from other networks, just as it can happen in a real environment. To set the occupancy percentages, experiments were performed to measure the maximum transmission capacity of the test network. Concerning the quantity of movement, it was necessary to make a preliminary classification of videos according to spatial and temporal characteristics of each one. The videos were separated into three categories and within these categories, three videos were chosen at random to participate in the experiments. The results show that the HEVC achieved the highest average for quality metricsofthechosenvideos,andthecodecistheonethatloseslessqualityinawireless transmission. The amount of movement affects the quality of the received video, and the greater the amount of motion, the bigger the loss of image quality.
Mittal, Ashutosh. "Novel Approach to Optimize Bandwidth Consumption for Video Streaming using Eye Tracking". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212061.
Texto completo da fonteNya framsteg inom ögonstyrningsteknologi har möjliggjort att betrakta ögonstyrning (o.k.s. eyetracking) som ett billigt, pålitligt och effektivt tillägg till teknologier för människa-dator interaktion. Det här examensarbetet utforskar möjligheten att använda ögonstyrning för klientmedveten videoströmning. Allt fler personer förbrukar videoinnehåll av hög kvalitet genom trådlösa nätverk, därmed finns det ett behov av att optimera bandbreddskonsumtionen för effektiv leverans av ett sådant högkvalitativt innehåll, både för 2Doch 360°-videor.Det här arbetet introducerar SEEN (Smart Eye-tracking Enabled Networking), en ny approach för att strömma videoinnehåll, som bygger på realtidsinformation från ögonstyrning. Den använder HEVC-metoder för rutindelning av video för att visa högkvalitativt och lågkvalitativt innehåll i samma videoram, beroende på vart användaren tittar. Lönsamheten av den föreslagna approachen validerades med hjälp av omfattande användartester utförda på en testbädd för upplevelsekvalité (Quality of Experience, QoE) som också utvecklades som en del av det här examensarbetet. Testresultaten visar betydande bandbreddsbesparingar på upp till 71% för 2D-videor på vanliga 4K-skärmar samt upp till 83% för 360°-videor på VR-headset för acceptabla QoE-betyg. En komparativ studie om viewport tracking och ögonstyrning i VR-headset är också inkluderad i det här examensarbetet för att ytterligare förespråka behovet av ögonstyrning.Denna forskning genomfördes i samarbete med Ericsson, Tobii och KTH under paraplyprojektet SEEN: Smart Eye-tracking Enabled Networking.
Ejembi, Oche Omobamibo. "Enabling energy-awareness for internet video". Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9768.
Texto completo da fonteTheriault, Shelli. "Enhancing visual arts instruction through technology : how the integration of Discovery Education's United Streaming Videos and the interactive SMART Board is changing instruction in the art room /". Abstract Full Text (HTML) Full Text (PDF), 2007. http://eprints.ccsu.edu/archive/00000437/02/1933FT.htm.
Texto completo da fonteThesis advisor: Cora Marshall. "... in partial fulfillment of the requirements for the degree of Master of Science in Art Education." Includes bibliographical references (leaves 77-80). Also available via the World Wide Web.
Corbillon, Xavier. "Enable the next generation of interactive video streaming". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0103/document.
Texto completo da fonteOmnidirectional videos, also denoted as spherical videos or 360° videos, are videos with pixels recorded from a given viewpoint in every direction of space. A user watching such an omnidirectional content with a Head Mounted Display (HMD) can select the portion of the videoto display, usually denoted as viewport, by moving her head. To feel high immersion inside the content a user needs to see viewport with 4K resolutionand 90 Hz frame rate. With traditional streaming technologies, providing such quality would require a data rate of more than 100 Mbit s−1, which is far too high compared to the median Internet access band width. In this dissertation, I present my contributions to enable the streaming of highly immersive omnidirectional videos on the Internet. We can distinguish six contributions : a viewport-adaptive streaming architecture proposal reusing a part of existing technologies ; an extension of this architecture for videos with six degrees of freedom ; two theoretical studies of videos with non homogeneous spatial quality ; an open-source software for handling 360° videos ; and a dataset of recorded users’ trajectories while watching 360° videos
Livros sobre o assunto "Streaming videos"
United States. Congress. Senate. Committee on Commerce, Science, and Transportation. At a tipping point: Consumer choice, consolidation and the future video marketplace : hearing before the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Thirteenth Congress, second session, July 16, 2014. Washington: U.S. Government Publishing Office, 2015.
Encontre o texto completo da fonteNakaya, Andrea C. Reed Hastings and Nexflix. San Diego, CA: ReferencePoint Press, Inc., 2016.
Encontre o texto completo da fonteExploitation: Lo sguardo che uccide. Roma: UniversItalia, 2013.
Encontre o texto completo da fonteTian, Ye, Min Zhao e Xinming Zhang. Internet Video Data Streaming. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6523-1.
Texto completo da fonteSetton, Eric, e Bernd Girod. Peer-to-Peer Video Streaming. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-74115-4.
Texto completo da fonteFollansbee, Joe. Get Streaming! San Diego: Elsevier Science & Technology, 2010.
Encontre o texto completo da fonteBing, Benny. Next-Generation Video Coding and Streaming. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119133346.
Texto completo da fonteThe technology of video and audio streaming. 2a ed. Burlington, MA: Focal Press, 2004.
Encontre o texto completo da fonteMastering internet video: A guide to streaming and on-demand video. Boston: Addison-Wesley, 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Streaming videos"
Shou, Zheng, Junting Pan, Jonathan Chan, Kazuyuki Miyazawa, Hassan Mansour, Anthony Vetro, Xavier Giro-i-Nieto e Shih-Fu Chang. "Online Detection of Action Start in Untrimmed, Streaming Videos". In Computer Vision – ECCV 2018, 551–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01219-9_33.
Texto completo da fonteLee, Chu-Chuan, Pao-Chi Chang e Shih-Jung Chuang. "Unequal Priority Arrangement for Delivering Streaming Videos over Differentiated Service Networks". In Advances in Image and Video Technology, 812–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949534_81.
Texto completo da fonteNair, Binu M. "Unsupervised Deep Networks for Temporal Localization of Human Actions in Streaming Videos". In Advances in Visual Computing, 143–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50832-0_15.
Texto completo da fonteLi, Yunqiao, Yiling Xu, Shaowei Xie, Liangji Ma e Jun Sun. "Two-Layer FoV Prediction Model for Viewport Dependent Streaming of 360-Degree Videos". In Communications and Networking, 501–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06161-6_49.
Texto completo da fonteChang, Ing-Chau, e Ming-Hung Huang. "The Adaptive Feedback Scheduling Framework for Streaming VBR Videos with Wireless ATM ABR Service". In Advances in Multimedia Information Processing — PCM 2002, 920–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36228-2_114.
Texto completo da fonteGarcia, Marie-Neige, Savvas Argyropoulos, Nicolas Staelens, Matteo Naccari, Miguel Rios-Quintero e Alexander Raake. "Video Streaming". In Quality of Experience, 277–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02681-7_19.
Texto completo da fonteGirod, Bernd, Niko Färber e Klaus Stuhlmüller. "Internet Video-Streaming". In Multimedia Communications, 547–56. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0859-7_45.
Texto completo da fonteAbboud, Osama, e Julius Rückert. "Video-Streaming Overlays". In Benchmarking Peer-to-Peer Systems, 169–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38673-2_9.
Texto completo da fonteEdge, Charles S., Chris Barker e Ehren Schwiebert. "Streaming QuickTime Video". In Beginning Mac OS X Snow Leopard Server, 453–72. Berkeley, CA: Apress, 2010. http://dx.doi.org/10.1007/978-1-4302-2773-1_17.
Texto completo da fonteNarayanan, Ram Lakshmi, Yinghua Ye, Anuj Kaul e Mili Shah. "Mobile Video Streaming". In Advanced Content Delivery, Streaming, and Cloud Services, 141–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118909690.ch7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Streaming videos"
Filho, Roberto Irajá Tavares da Costa, Filip De Turck e Luciano Paschoal Gaspary. "From 2D to Next Generation VR/AR Videos: Enabling Efficient Streaming via QoE-aware Mobile Networks". In XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sbrc_estendido.2020.12416.
Texto completo da fonteMa, Hongwei, Xiaoke Jiang, Rui Ma, Zhiyou Ma, Yizhen Cai e Dah Ming Chiu. "Smart Streaming of Panoramic Videos". In SIGCOMM '18: ACM SIGCOMM 2018 Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3229625.3229628.
Texto completo da fonteQin, Yanyuan, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang e Chaoqun Yue. "ABR streaming of VBR-encoded videos". In CoNEXT '18: The 14th International Conference on emerging Networking EXperiments and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3281411.3281439.
Texto completo da fonteRomero-Rondón, Miguel Fabian, Lucile Sassatelli, Frédéric Precioso e Ramon Aparicio-Pardo. "Foveated streaming of virtual reality videos". In MMSys '18: 9th ACM Multimedia Systems Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3204949.3208114.
Texto completo da fonteDasari, Mallesham, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna Balasubramanian e Samir R. Das. "Streaming 360-Degree Videos Using Super-Resolution". In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. IEEE, 2020. http://dx.doi.org/10.1109/infocom41043.2020.9155477.
Texto completo da fonteXu, Zhimin, Xinggong Zhang, Kai Zhang e Zongming Guo. "Probabilistic Viewport Adaptive Streaming for 360-degree Videos". In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351404.
Texto completo da fonteNi, Pengpeng, Alexander Eichhorn, Carsten Griwodz e Pål Halvorsen. "Fine-grained scalable streaming from coarse-grained videos". In the 18th international workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1542245.1542269.
Texto completo da fonteHasan, Mahmudul, e Amit K. Roy-Chowdhury. "Incremental Activity Modeling and Recognition in Streaming Videos". In 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014. http://dx.doi.org/10.1109/cvpr.2014.107.
Texto completo da fonteCorbillon, Xavier, Francesca De Simone, Gwendal Simon e Pascal Frossard. "Dynamic adaptive streaming for multi-viewpoint omnidirectional videos". In MMSys '18: 9th ACM Multimedia Systems Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3204949.3204968.
Texto completo da fonteTemel, Dogancan, Mohammed Aabed, Mashhour Solh e Ghaassan AlRegib. "Efficient streaming of stereoscopic depth-based 3D videos". In IS&T/SPIE Electronic Imaging, editado por Amir Said, Onur G. Guleryuz e Robert L. Stevenson. SPIE, 2013. http://dx.doi.org/10.1117/12.2005161.
Texto completo da fonteRelatórios de organizações sobre o assunto "Streaming videos"
Fletcher, Jonathan, David Doria e David Druno. Android Video Streaming. Fort Belvoir, VA: Defense Technical Information Center, maio de 2014. http://dx.doi.org/10.21236/ada601489.
Texto completo da fonteWoods, John W., e Shivkumar Kalyanaraman. Streaming Video Compression for Heterogeneous Networks. Fort Belvoir, VA: Defense Technical Information Center, abril de 2004. http://dx.doi.org/10.21236/ada424493.
Texto completo da fonteBounker, Paul. Streaming Video Modeling for Robotics Teleoperation. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2011. http://dx.doi.org/10.21236/ada548050.
Texto completo da fonteLederer, S., D. Posch, C. Timmerer, A. Azgin, W. Liu, C. Mueller, A. Detti et al. Adaptive Video Streaming over Information-Centric Networking (ICN). Editado por C. Westphal. RFC Editor, agosto de 2016. http://dx.doi.org/10.17487/rfc7933.
Texto completo da fonte