Siga este link para ver outros tipos de publicações sobre o tema: Symmetric varieties.

Artigos de revistas sobre o tema "Symmetric varieties"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Symmetric varieties".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bifet, Emili. "On complete symmetric varieties". Advances in Mathematics 80, n.º 2 (abril de 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Guay, Nicolas. "Embeddings of symmetric varieties". Transformation Groups 6, n.º 4 (dezembro de 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

De Concini, C., e T. A. Springer. "Compactification of symmetric varieties". Transformation Groups 4, n.º 2-3 (junho de 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hong, Jiuzu, e Korkeat Korkeathikhun. "Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties". Representation Theory of the American Mathematical Society 26, n.º 20 (2 de junho de 2022): 585–615. http://dx.doi.org/10.1090/ert/613.

Texto completo da fonte
Resumo:
We relate the geometry of Schubert varieties in twisted affine Grassmannian and the nilpotent varieties in symmetric spaces. This extends some results of Achar–Henderson in the twisted setting. We also get some applications to the geometry of the order 2 nilpotent varieties in certain classical symmetric spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Can, Mahir Bilen, Roger Howe e Lex Renner. "Monoid embeddings of symmetric varieties". Colloquium Mathematicum 157, n.º 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Li, Yiqiang. "Quiver varieties and symmetric pairs". Representation Theory of the American Mathematical Society 23, n.º 1 (17 de janeiro de 2019): 1–56. http://dx.doi.org/10.1090/ert/522.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Uzawa, Tohru. "Symmetric varieties over arbitrary fields". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, n.º 9 (novembro de 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cuntz, M., Y. Ren e G. Trautmann. "Strongly symmetric smooth toric varieties". Kyoto Journal of Mathematics 52, n.º 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Pragacz, P. "Determinantal varieties and symmetric polynomials". Functional Analysis and Its Applications 21, n.º 3 (julho de 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Aramova, Annetta G. "Symmetric products of Gorenstein varieties". Journal of Algebra 146, n.º 2 (março de 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Springer, T. A. "Decompositions related to symmetric varieties". Journal of Algebra 329, n.º 1 (março de 2011): 260–73. http://dx.doi.org/10.1016/j.jalgebra.2010.03.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Kiritchenko, Valentina, e Amalendu Krishna. "Equivariant cobordism of flag varieties and of symmetric varieties". Transformation Groups 18, n.º 2 (5 de maio de 2013): 391–413. http://dx.doi.org/10.1007/s00031-013-9223-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Lee, Jae-Hyouk, Kyeong-Dong Park e Sungmin Yoo. "Kähler–Einstein Metrics on Smooth Fano Symmetric Varieties with Picard Number One". Mathematics 9, n.º 1 (5 de janeiro de 2021): 102. http://dx.doi.org/10.3390/math9010102.

Texto completo da fonte
Resumo:
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present their algebraic moment polytopes and compute the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yu, Chenglong, e Zhiwei Zheng. "Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties". Algebra & Number Theory 14, n.º 10 (19 de novembro de 2020): 2647–83. http://dx.doi.org/10.2140/ant.2020.14.2647.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Can, Mahir Bilen, Michael Joyce e Benjamin Wyser. "Wonderful symmetric varieties and Schubert polynomials". Ars Mathematica Contemporanea 15, n.º 2 (11 de setembro de 2018): 523–42. http://dx.doi.org/10.26493/1855-3974.1062.ba8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Pate, Thomas H. "Algebraic varieties in the symmetric algebra". Linear and Multilinear Algebra 20, n.º 1 (novembro de 1986): 63–74. http://dx.doi.org/10.1080/03081088608817742.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

PANYUSHEV, DMITRI, e OKSANA YAKIMOVA. "Symmetric pairs and associated commuting varieties". Mathematical Proceedings of the Cambridge Philosophical Society 143, n.º 2 (setembro de 2007): 307–21. http://dx.doi.org/10.1017/s0305004107000473.

Texto completo da fonte
Resumo:
AbstractLet $\g=\g_0\oplus\g_1$ be a $\mathbb Z_2$-grading of a simple Lie algebra $\g$. The commuting variety associated with such a grading is the variety of pairs of commuting elements from $\g_1$. We study the problem of irreducibility of these varieties. Using invariant-theoretic technique, we present new instances of reducible and irreducible commuting varieties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Sankaran, G. K. "Fundamental group of locally symmetric varieties". Manuscripta Mathematica 90, n.º 1 (dezembro de 1996): 39–48. http://dx.doi.org/10.1007/bf02568292.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Strickland, Elisabetta. "Equivariant betti numbers for symmetric varieties". Journal of Algebra 145, n.º 1 (janeiro de 1992): 120–27. http://dx.doi.org/10.1016/0021-8693(92)90180-t.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Kollár, János. "Symmetric powers of Severi–Brauer varieties". Annales de la faculté des sciences de Toulouse Mathématiques 27, n.º 4 (2018): 849–62. http://dx.doi.org/10.5802/afst.1584.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Maffei, Andrea, e Rocco Chiriv�. "Projective normality of complete symmetric varieties". Duke Mathematical Journal 122, n.º 1 (março de 2004): 93–123. http://dx.doi.org/10.1215/s0012-7094-04-12213-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Pumplün, Susanne. "Symmetric composition algebras over algebraic varieties". manuscripta mathematica 132, n.º 3-4 (22 de fevereiro de 2010): 307–33. http://dx.doi.org/10.1007/s00229-010-0348-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Buch, Anders Skovsted. "Stanley Symmetric Functions and Quiver Varieties". Journal of Algebra 235, n.º 1 (janeiro de 2001): 243–60. http://dx.doi.org/10.1006/jabr.2000.8478.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Akhiezer, D. N., e E. B. Vinberg. "Weakly symmetric spaces and spherical varieties". Transformation Groups 4, n.º 1 (março de 1999): 3–24. http://dx.doi.org/10.1007/bf01236659.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Kinser, Ryan, e Jenna Rajchgot. "Type D quiver representation varieties, double Grassmannians, and symmetric varieties". Advances in Mathematics 376 (janeiro de 2021): 107454. http://dx.doi.org/10.1016/j.aim.2020.107454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

AVAN, J., J.-M. MAILLARD, M. TALON e C. VIALLET. "ALGEBRAIC VARIETIES FOR THE CHIRAL POTTS MODEL". International Journal of Modern Physics B 04, n.º 10 (agosto de 1990): 1743–62. http://dx.doi.org/10.1142/s0217979290000875.

Texto completo da fonte
Resumo:
We describe the symmetries of the chiral checkerboard Potts model (duality, inversion relation, …) and write down the algebraic variety corresponding to the integrable case advocated by Baxter, Perk, Au-Yang. We examine some of its subvarieties, in different limits and for various lattices, with a special emphasis on q=3. This yields for q=3, a new algebraic variety where the standard scalar checkerboard Potts model is solvable. By a comparative analysis of the parametrization of the integrable four-state chiral Potts model and the one of the symmetric Ashkin-Teller model, we bring to light algebraic subvarieties for the q-state chiral Potts model which are invariant under the symmetries of the model. We recover in this manner the Fateev-Zamolodchikov points.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Chajda, Ivan. "Varieties with modular and distributive lattices of symmetric or reflexive relations". Czechoslovak Mathematical Journal 42, n.º 4 (1992): 623–30. http://dx.doi.org/10.21136/cmj.1992.128357.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Chirivì, Rocco, Corrado De Concini e Andrea Maffei. "On normality of cones over symmetric varieties". Tohoku Mathematical Journal 58, n.º 4 (dezembro de 2006): 599–616. http://dx.doi.org/10.2748/tmj/1170347692.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Hemmer, David J., e Daniel K. Nakano. "Support varieties for modules over symmetric groups". Journal of Algebra 254, n.º 2 (agosto de 2002): 422–40. http://dx.doi.org/10.1016/s0021-8693(02)00104-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Casagrande, Cinzia. "Centrally symmetric generators in toric Fano varieties". manuscripta mathematica 111, n.º 4 (1 de agosto de 2003): 471–85. http://dx.doi.org/10.1007/s00229-003-0374-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Maffei, Andrea. "Orbits in Degenerate Compactifications of Symmetric Varieties". Transformation Groups 14, n.º 1 (20 de novembro de 2008): 183–94. http://dx.doi.org/10.1007/s00031-008-9040-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Süß, Hendrik. "Kähler–Einstein metrics on symmetric FanoT-varieties". Advances in Mathematics 246 (outubro de 2013): 100–113. http://dx.doi.org/10.1016/j.aim.2013.06.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gagliardi, Giuliano, e Johannes Hofscheier. "The generalized Mukai conjecture for symmetric varieties". Transactions of the American Mathematical Society 369, n.º 4 (2 de maio de 2016): 2615–49. http://dx.doi.org/10.1090/tran/6738.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Fan, Zhaobing, Chun-Ju Lai, Yiqiang Li, Li Luo e Weiqiang Wang. "Affine flag varieties and quantum symmetric pairs". Memoirs of the American Mathematical Society 265, n.º 1285 (maio de 2020): 0. http://dx.doi.org/10.1090/memo/1285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Venkataramana, T. N. "On Cycles on Compact Locally Symmetric Varieties". Monatshefte f?r Mathematik 135, n.º 3 (1 de abril de 2002): 221–44. http://dx.doi.org/10.1007/s006050200018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ruzzi, Alessandro. "Projective normality of complete toroidal symmetric varieties". Journal of Algebra 318, n.º 1 (dezembro de 2007): 302–22. http://dx.doi.org/10.1016/j.jalgebra.2007.07.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Franz, Matthias. "Symmetric Products of Equivariantly Formal Spaces". Canadian Mathematical Bulletin 61, n.º 2 (1 de junho de 2018): 272–81. http://dx.doi.org/10.4153/cmb-2017-032-0.

Texto completo da fonte
Resumo:
AbstractLet X be a CW complex with a continuous action of a topological group G. We show that if X is equivariantly formal for singular cohomology with coefficients in some field , then so are all symmetric products of X and in fact all its Γ-products. In particular, symmetric products of quasi-projective M-varieties are again M-varieties. This generalizes a result by Biswas and D’Mello about symmetric products of M-curves. We also discuss several related questions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Jones, Oliver. "On the geometry of varieties of invertible symmetric and skew-symmetric matrices". Pacific Journal of Mathematics 180, n.º 1 (1 de setembro de 1997): 89–100. http://dx.doi.org/10.2140/pjm.1997.180.89.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

RUZZI, ALESSANDRO. "SMOOTH PROJECTIVE SYMMETRIC VARIETIES WITH PICARD NUMBER ONE". International Journal of Mathematics 22, n.º 02 (fevereiro de 2011): 145–77. http://dx.doi.org/10.1142/s0129167x11005678.

Texto completo da fonte
Resumo:
We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover, we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Casarotti, Alex, Alex Massarenti e Massimiliano Mella. "On Comon’s and Strassen’s Conjectures". Mathematics 6, n.º 11 (25 de outubro de 2018): 217. http://dx.doi.org/10.3390/math6110217.

Texto completo da fonte
Resumo:
Comon’s conjecture on the equality of the rank and the symmetric rank of a symmetric tensor, and Strassen’s conjecture on the additivity of the rank of tensors are two of the most challenging and guiding problems in the area of tensor decomposition. We survey the main known results on these conjectures, and, under suitable bounds on the rank, we prove them, building on classical techniques used in the case of symmetric tensors, for mixed tensors. Finally, we improve the bound for Comon’s conjecture given by flattenings by producing new equations for secant varieties of Veronese and Segre varieties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Boe, Brian D., e Joseph H. G. Fu. "Characteristic Cycles in Hermitian Symmetric Spaces". Canadian Journal of Mathematics 49, n.º 3 (1 de junho de 1997): 417–67. http://dx.doi.org/10.4153/cjm-1997-021-7.

Texto completo da fonte
Resumo:
AbstractWe give explicit combinatorial expresssions for the characteristic cycles associated to certain canonical sheaves on Schubert varieties X in the classical Hermitian symmetric spaces: namely the intersection homology sheaves IHX and the constant sheaves ℂX. The three main cases of interest are the Hermitian symmetric spaces for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian) and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if and only if the associated Dynkin diagramis simply laced. The result for Schubert varieties in the standard Grassmannian had been established earlier by Bressler, Finkelberg and Lunts, while the computations in the Cn and Dn cases are new.Our approach is to compute CC(ℂX) by a direct geometric method, then to use the combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmetric spaces) to compute CC(IHX). The geometric method is based on the fundamental formula where the Xr ↓ X constitute a family of tubes around the variety X. This formula leads at once to an expression for the coefficients of CC(ℂX) as the degrees of certain singular maps between spheres.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Yohan BRUNEBARBE. "A strong hyperbolicity property of locally symmetric varieties". Annales scientifiques de l'École normale supérieure 53, n.º 6 (2020): 1545–60. http://dx.doi.org/10.24033/asens.2453.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Marberg, Eric, e Brendan Pawlowski. "Gröbner geometry for skew-symmetric matrix Schubert varieties". Advances in Mathematics 405 (agosto de 2022): 108488. http://dx.doi.org/10.1016/j.aim.2022.108488.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Browning, T. D., e A. Gorodnik. "Power-free values of polynomials on symmetric varieties". Proceedings of the London Mathematical Society 114, n.º 6 (10 de março de 2017): 1044–80. http://dx.doi.org/10.1112/plms.12030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Gorodnik, Alexander, Hee Oh e Nimish Shah. "Integral points on symmetric varieties and Satake compatifications". American Journal of Mathematics 131, n.º 1 (2009): 1–57. http://dx.doi.org/10.1353/ajm.0.0034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Bigeni, Ange, e Evgeny Feigin. "Symmetric Dellac configurations and symplectic/orthogonal flag varieties". Linear Algebra and its Applications 573 (julho de 2019): 54–79. http://dx.doi.org/10.1016/j.laa.2019.03.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Beelen, Peter, e Prasant Singh. "Linear codes associated to skew-symmetric determinantal varieties". Finite Fields and Their Applications 58 (julho de 2019): 32–45. http://dx.doi.org/10.1016/j.ffa.2019.03.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Robles, C., e D. The. "Rigid Schubert varieties in compact Hermitian symmetric spaces". Selecta Mathematica 18, n.º 3 (17 de janeiro de 2012): 717–77. http://dx.doi.org/10.1007/s00029-011-0082-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

TAKAHASHI, NOBUYOSHI. "QUANDLE VARIETIES, GENERALIZED SYMMETRIC SPACES, AND φ-SPACES". Transformation Groups 21, n.º 2 (25 de novembro de 2015): 555–76. http://dx.doi.org/10.1007/s00031-015-9351-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Richardson, R. W., e T. A. Springer. "Complements to ‘The Bruhat order on symmetric varieties’". Geometriae Dedicata 49, n.º 2 (fevereiro de 1994): 231–38. http://dx.doi.org/10.1007/bf01610623.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia