Artigos de revistas sobre o tema "Synthetic plants"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Synthetic plants".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sajid, Moon, Chaitanya N. Channakesavula, Shane R. Stone e Parwinder Kaur. "Synthetic Biology towards Improved Flavonoid Pharmacokinetics". Biomolecules 11, n.º 5 (18 de maio de 2021): 754. http://dx.doi.org/10.3390/biom11050754.
Texto completo da fonteLeydon, Alexander R., Hardik P. Gala, Sarah Guiziou e Jennifer L. Nemhauser. "Engineering Synthetic Signaling in Plants". Annual Review of Plant Biology 71, n.º 1 (29 de abril de 2020): 767–88. http://dx.doi.org/10.1146/annurev-arplant-081519-035852.
Texto completo da fonteGaeta, Robert T., Rick E. Masonbrink, Lakshminarasimhan Krishnaswamy, Changzeng Zhao e James A. Birchler. "Synthetic Chromosome Platforms in Plants". Annual Review of Plant Biology 63, n.º 1 (2 de junho de 2012): 307–30. http://dx.doi.org/10.1146/annurev-arplant-042110-103924.
Texto completo da fonteChruma, Jason J., Douglas J. Cullen, Lydia Bowman e Patrick H. Toy. "Polyunsaturated fatty acid amides from the Zanthoxylum genus – from culinary curiosities to probes for chemical biology". Natural Product Reports 35, n.º 1 (2018): 54–74. http://dx.doi.org/10.1039/c7np00044h.
Texto completo da fonteKassaw, Tessema K., Alberto J. Donayre-Torres, Mauricio S. Antunes, Kevin J. Morey e June I. Medford. "Engineering synthetic regulatory circuits in plants". Plant Science 273 (agosto de 2018): 13–22. http://dx.doi.org/10.1016/j.plantsci.2018.04.005.
Texto completo da fontede Lange, Orlando, Eric Klavins e Jennifer Nemhauser. "Synthetic genetic circuits in crop plants". Current Opinion in Biotechnology 49 (fevereiro de 2018): 16–22. http://dx.doi.org/10.1016/j.copbio.2017.07.003.
Texto completo da fonteKołodziejczyk, Marek, Andrzej Oleksy, Bogdan Kulig e Andrzej Lepiarczyk. "Early potato cultivation using synthetic and biodegradable covers". Plant, Soil and Environment 65, No. 2 (1 de fevereiro de 2019): 97–103. http://dx.doi.org/10.17221/754/2018-pse.
Texto completo da fonteMotmainna, Mst, Abdul Shukor Juraimi, Muhammad Saiful Ahmad-Hamdani, Mahmudul Hasan, Sabina Yeasmin, Md Parvez Anwar e A. K. M. Mominul Islam. "Allelopathic Potential of Tropical Plants—A Review". Agronomy 13, n.º 8 (4 de agosto de 2023): 2063. http://dx.doi.org/10.3390/agronomy13082063.
Texto completo da fonteTsygankova Victoria, Anatolyivna, YaV Andrusevich, NM Vasylenko, VM Kopich, SV Popilnichenko, SG Pilyo e VS Brovarets. "Auxin-like and Cytokinin-like Effects of New Synthetic Thienopyrimidine Derivatives on the Growth and Photosynthesis of Wheat". Journal of Plant Science and Phytopathology 8, n.º 1 (19 de março de 2024): 015–24. http://dx.doi.org/10.29328/journal.jpsp.1001126.
Texto completo da fonteK. A. Fadhil, T. Suryati e A. Jayanegara. "Comparison Between Natural and Synthetic Antioxidants in Beef Products: A MetaAnalysis". Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan 11, n.º 1 (29 de janeiro de 2023): 19–26. http://dx.doi.org/10.29244/jipthp.11.1.19-26.
Texto completo da fonteChávez-Arias, Cristhian C., Sandra Gómez-Caro e Hermann Restrepo-Díaz. "Physiological Responses to the Foliar Application of Synthetic Resistance Elicitors in Cape Gooseberry Seedlings Infected with Fusarium oxysporum f. sp. physali". Plants 9, n.º 2 (1 de fevereiro de 2020): 176. http://dx.doi.org/10.3390/plants9020176.
Texto completo da fontePan, Yanqing, Todd L. Lowary e Rik R. Tykwinski. "Naturally occurring and synthetic polyyne glycosides". Canadian Journal of Chemistry 87, n.º 11 (novembro de 2009): 1565–82. http://dx.doi.org/10.1139/v09-117.
Texto completo da fonteMaurino, Veronica G., e Andreas P. M. Weber. "Engineering photosynthesis in plants and synthetic microorganisms". Journal of Experimental Botany 64, n.º 3 (1 de outubro de 2012): 743–51. http://dx.doi.org/10.1093/jxb/ers263.
Texto completo da fonteAndres, Jennifer, Tim Blomeier e Matias D. Zurbriggen. "Synthetic Switches and Regulatory Circuits in Plants". Plant Physiology 179, n.º 3 (28 de janeiro de 2019): 862–84. http://dx.doi.org/10.1104/pp.18.01362.
Texto completo da fonteSainsbury, Frank, e George P. Lomonossoff. "Transient expressions of synthetic biology in plants". Current Opinion in Plant Biology 19 (junho de 2014): 1–7. http://dx.doi.org/10.1016/j.pbi.2014.02.003.
Texto completo da fonteSmall, Ian, e Holger Puchta. "Emerging tools for synthetic biology in plants". Plant Journal 78, n.º 5 (23 de maio de 2014): 725–26. http://dx.doi.org/10.1111/tpj.12462.
Texto completo da fonteAdeyemi, Jerry O., Ayodeji O. Oriola, Damian C. Onwudiwe e Adebola O. Oyedeji. "Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications". Biomolecules 12, n.º 5 (24 de abril de 2022): 627. http://dx.doi.org/10.3390/biom12050627.
Texto completo da fonteStokstad, Erik. "Two teams supercharge gene spread in plants". Science 384, n.º 6703 (28 de junho de 2024): 1394–95. http://dx.doi.org/10.1126/science.adr3311.
Texto completo da fonteESYANTI, RIZKITA RACHMI, NADYA FARAH, MUHAMMAD FAKHRI FAIZ, MUTHIA GASSANI VERDIANTI, SUNARDI e RAMADHANI SAFITRI. "THE EFFECT OF SYNTHETIC FUNGICIDE ON DISEASE SEVERITY AND PLANT GROWTH OF CHILI PEPPER (Capsicum annuum L.) INFECTED WITH Phytophthora capsici". Malaysian Applied Biology 49, n.º 2 (17 de julho de 2021): 7–12. http://dx.doi.org/10.55230/mabjournal.v49i2.1516.
Texto completo da fonteAdusei, Stephen, e Samuel Azupio. "Neem: A Novel Biocide for Pest and Disease Control of Plants". Journal of Chemistry 2022 (17 de novembro de 2022): 1–12. http://dx.doi.org/10.1155/2022/6778554.
Texto completo da fonteHashimoto, Hajime, Shinnosuke Wakamori, Kazutada Ikeuchi e Hidetoshi Yamada. "Divergent Synthesis of Four Monomeric Ellagitannins toward the Total Synthesis of an Oligomeric Ellagitannin, Nobotanin K". Organics 3, n.º 3 (6 de setembro de 2022): 293–303. http://dx.doi.org/10.3390/org3030022.
Texto completo da fontePirdhankar, Ms Swati, Pratik S. Sadamate e Dr Rupali Tasgaonkar. "Cardioprotective Herbal Plants: A Review". International Journal for Research in Applied Science and Engineering Technology 11, n.º 3 (31 de março de 2023): 1114–18. http://dx.doi.org/10.22214/ijraset.2023.49555.
Texto completo da fonteLi, Zhaogao, Keyi Xiong, Weie Wen, Lin Li e Delin Xu. "Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications". International Journal of Molecular Sciences 24, n.º 2 (6 de janeiro de 2023): 1153. http://dx.doi.org/10.3390/ijms24021153.
Texto completo da fonteCai, Yao-Min, Kalyani Kallam, Henry Tidd, Giovanni Gendarini, Amanda Salzman e Nicola J. Patron. "Rational design of minimal synthetic promoters for plants". Nucleic Acids Research 48, n.º 21 (28 de agosto de 2020): 11845–56. http://dx.doi.org/10.1093/nar/gkaa682.
Texto completo da fonteTaranenko, A. M. "GENETIC TRANSFORMATION OF PLANTS CONTAINING THE SYNTHETIC cry1Ab GENE ENCODING RESISTANCE TO LEPIDOPTERAN PESTS". Biotechnologia Acta 12, n.º 6 (dezembro de 2019): 56–64. http://dx.doi.org/10.15407/biotech12.06.056.
Texto completo da fonteMallarangeng, Rahayu Rahayu, Muhammad Taufik Muhayang, M. Tufaila H e Rachmawati Hasid Hasid. "Refugia Plant Pest and Disease Management in Wolasi, South Konawe Wolasi". JURNAL KARYA PENGABDIAN 4, n.º 2 (30 de outubro de 2022): 74–81. http://dx.doi.org/10.29303/jkp.v4i2.129.
Texto completo da fonteSong, Jun-Tae, Dong-U. Woo, Yejin Lee, Sung-Hoon Choi e Yang-Jae Kang. "The Semi-Supervised Strategy of Machine Learning on the Gene Family Diversity to Unravel Resveratrol Synthesis". Plants 10, n.º 10 (29 de setembro de 2021): 2058. http://dx.doi.org/10.3390/plants10102058.
Texto completo da fonteVishnuvardhini R e Priya R Iyer. "A review on antifungal agents against Candida albicans and Aspergillus niger". International Journal of Biological and Pharmaceutical Sciences Archive 2, n.º 1 (30 de agosto de 2021): 042–54. http://dx.doi.org/10.53771/ijbpsa.2021.2.1.0061.
Texto completo da fonteHan, Taotao, e Guopeng Miao. "Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites". Molecules 29, n.º 9 (2 de maio de 2024): 2106. http://dx.doi.org/10.3390/molecules29092106.
Texto completo da fonteMacDonald, IDU. "Medicinal Plants and Tomorrow’s Pharmacy – Nigerian Experience". Journal of Ayurvedic and Herbal Medicine 2, n.º 4 (25 de agosto de 2016): 100–101. http://dx.doi.org/10.31254/jahm.2016.2401.
Texto completo da fonteBrophy, Jennifer A. N. "Toward synthetic plant development". Plant Physiology 188, n.º 2 (14 de dezembro de 2021): 738–48. http://dx.doi.org/10.1093/plphys/kiab568.
Texto completo da fontePrajapati, Anil Kumar, Pratiksha Patil e Sneha Joshi. "A review on plants possesses anti tubercular activity". Journal of Preventive Medicine and Holistic Health 9, n.º 2 (15 de novembro de 2023): 50–56. http://dx.doi.org/10.18231/j.jpmhh.2023.012.
Texto completo da fonteMadhumitha, G., e Selvaraj Mohana Roopan. "Devastated Crops: Multifunctional Efficacy for the Production of Nanoparticles". Journal of Nanomaterials 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/951858.
Texto completo da fonteMeena Choudhary e Priyanka Singh. "Natural Dyes from Medicinal Plants: An Exploration of Their Potential in Textile Industry". International Journal of Scientific Research in Science and Technology 12, n.º 2 (19 de março de 2025): 306–15. https://doi.org/10.32628/ijsrst25122230.
Texto completo da fonteTella, Toluwani, Carolina Pohl e Kovalchuk Igor. "A review on diabetes mellitus: complications, synthetic anti-diabetic agents and herbal treatment". F1000Research 13 (19 de fevereiro de 2024): 124. http://dx.doi.org/10.12688/f1000research.141015.1.
Texto completo da fonteSumer, Peter De Roux, Bimal Debbarma, Kmensiful Binan, Waibiangki Lyngdoh e Loushambam Samananda Singh. "Therapeutic Insights into Anti-Inflammatory Activities Derived from Medicinal Plants". UTTAR PRADESH JOURNAL OF ZOOLOGY 44, n.º 23 (20 de novembro de 2023): 95–108. http://dx.doi.org/10.56557/upjoz/2023/v44i233769.
Texto completo da fonteMittal, Rajinder Pal, Abhilash Rana e Vikas Jaitak. "Essential Oils: An Impending Substitute of Synthetic Antimicrobial Agents to Overcome Antimicrobial Resistance". Current Drug Targets 20, n.º 6 (29 de março de 2019): 605–24. http://dx.doi.org/10.2174/1389450119666181031122917.
Texto completo da fonteMikami, Nobuyoshi, Yoshiko Baba, Toshiyuki Katagi e Junshi Miyamoto. "Metabolism of the synthetic pyrethroid fenpropathrin in plants". Journal of Agricultural and Food Chemistry 33, n.º 5 (setembro de 1985): 980–87. http://dx.doi.org/10.1021/jf00065a051.
Texto completo da fonteBirchler, James A. "Promises and pitfalls of synthetic chromosomes in plants". Trends in Biotechnology 33, n.º 3 (março de 2015): 189–94. http://dx.doi.org/10.1016/j.tibtech.2014.12.010.
Texto completo da fonteFrey, Travis, e Bobby Williams. "Synthetic Biology Platform Unleashes the Power of Plants". Genetic Engineering & Biotechnology News 42, n.º 10 (1 de outubro de 2022): 57–59. http://dx.doi.org/10.1089/gen.42.10.16.
Texto completo da fonteAbdeeva, Inna A., Yulia S. Panina e Liliya G. Maloshenok. "Synthetic Biology Approaches to Posttranslational Regulation in Plants". Biochemistry (Moscow) 89, S1 (janeiro de 2024): S278—S289. http://dx.doi.org/10.1134/s0006297924140165.
Texto completo da fonteSoto, Nitza, Karoll Ferrer, Katy Díaz, César González, Lautaro Taborga, Andrés F. Olea, Héctor Carrasco e Luis Espinoza. "Synthesis and Biological Activity of New Brassinosteroid Analogs of Type 24-Nor-5β-Cholane and 23-Benzoate Function in the Side Chain". International Journal of Molecular Sciences 22, n.º 9 (1 de maio de 2021): 4808. http://dx.doi.org/10.3390/ijms22094808.
Texto completo da fonteOuedraogo, Salfo, Jules Yoda, Tata Kadiatou Traore, Mathieu Nitiema, Bavouma C. Sombie, Hermine Zime Diawara, Josias B. G. Yameogo et al. "Production de matières premières et fabrication des médicaments à base de plantes médicinales". International Journal of Biological and Chemical Sciences 15, n.º 2 (23 de junho de 2021): 750–72. http://dx.doi.org/10.4314/ijbcs.v15i2.28.
Texto completo da fonteFay, Nicolas, Rémi Blieck, Cyrille Kouklovsky e Aurélien de la Torre. "Total synthesis of grayanane natural products". Beilstein Journal of Organic Chemistry 18 (12 de dezembro de 2022): 1707–19. http://dx.doi.org/10.3762/bjoc.18.181.
Texto completo da fonteBrandsma, M., X. Wang, H. Diao, S. E. Kohalmi, A. M. Jevnikar e S. Ma. "A Proficient Approach to the Production of Therapeutic Glucagon-Like Peptide-1 (GLP-1) in Transgenic Plants". Open Biotechnology Journal 3, n.º 1 (16 de julho de 2009): 57–66. http://dx.doi.org/10.2174/1874070700903010057.
Texto completo da fonteDeja, Aleksandra K. "Synthetic seeds technology of Salvia officinalis as a method for short-term storage and in vitro propagation of valuable genotypes". Herba Polonica 68, n.º 4 (1 de dezembro de 2022): 25–29. http://dx.doi.org/10.2478/hepo-2022-0024.
Texto completo da fonteChern, Lee Yuan, M. Y. Shukor e Radzali Muse. "Monoterpenes in Plants- a mini review". Asian Journal of Plant Biology 1, n.º 1 (26 de dezembro de 2013): 15–19. http://dx.doi.org/10.54987/ajpb.v1i1.37.
Texto completo da fonteCOMAN, Cristina, Olivia Dumitrita RUGINA e Carmen SOCACIU. "Plants and Natural Compounds with Antidiabetic Action". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40, n.º 1 (14 de maio de 2012): 314. http://dx.doi.org/10.15835/nbha4017205.
Texto completo da fonteRavi, Putta. "Biological Active Compounds from Plants of Subarctic Origin". Journal of Clinical and Medical Case Reports and Reviews 2, n.º 4 (24 de outubro de 2022): 1–2. http://dx.doi.org/10.59468/2837-469x/025.
Texto completo da fonteTsygankova, VA, YaV Andrusevich, NM Vasylenko, VM Kopich, RM Solomyannyi, SV Popilnichenko, OP Kozachenko, SG Pilyo e VS Brovarets. "The Use of Thioxopyrimidine Derivatives as New Regulators of Growth and Photosynthesis of Barley". Journal of Plant Science and Phytopathology 8, n.º 2 (2 de julho de 2024): 090–99. http://dx.doi.org/10.29328/journal.jpsp.1001139.
Texto completo da fonte