Artigos de revistas sobre o tema "Thermal Stress Restrained Specimen Test"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Thermal Stress Restrained Specimen Test".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Pszczoła, Marek, and Józef Judycki. "Comparison of calculated and measured thermal stresses in asphalt concrete." BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING 10, no. 1 (2015): 39–45. http://dx.doi.org/10.3846/bjrbe.2015.05.
Texto completo da fonteZubeck, Hannele K., Huayang Zeng, Ted S. Vinson, and Vincent C. Janoo. "Field Validation of Thermal Stress Restrained Specimen Test: Six Case Histories." Transportation Research Record: Journal of the Transportation Research Board 1545, no. 1 (1996): 67–74. http://dx.doi.org/10.1177/0361198196154500109.
Texto completo da fonteHUANG, Chunshui, Zhanfeng ZHANG, and Danying DAO. "Thermal stress restrained specimen test on fiber enhanced asphalt concrete and thermal stress calculation models." Annales de chimie Science des Matériaux 42, no. 3 (2018): 387–403. http://dx.doi.org/10.3166/acsm.42.387-403.
Texto completo da fonteZubeck, Hannele K., and Ted S. Vinson. "Prediction of Low-Temperature Cracking of Asphalt Concrete Mixtures with Thermal Stress Restrained Specimen Test Results." Transportation Research Record: Journal of the Transportation Research Board 1545, no. 1 (1996): 50–58. http://dx.doi.org/10.1177/0361198196154500107.
Texto completo da fonteSteiner, Daniel, and Bernhard Hofko. "On the influence of basic thermodynamics on thermal cracking resistance of asphalt mixtures in cooling tests." RILEM Technical Letters 3 (July 12, 2018): 1–7. http://dx.doi.org/10.21809/rilemtechlett.2018.54.
Texto completo da fonteKeshavarzi, Behrooz, Douglas Mocelin, and Youngsoo Richard Kim. "Predicting Thermal Stress Restrained Specimen Test Fracture Temperatures Using the Dissipated Pseudo Strain Energy Criterion." Journal of Transportation Engineering, Part B: Pavements 147, no. 1 (2021): 04020088. http://dx.doi.org/10.1061/jpeodx.0000236.
Texto completo da fonteGražulytė, Judita, Audrius Vaitkus, Vitalijus Andrejevas, and Gediminas Gribulis. "Methods and criteria for evaluation of asphalt mixture resistance to low temperature cracking." Baltic Journal of Road and Bridge Engineering 12, no. 2 (2017): 135–44. http://dx.doi.org/10.3846/bjrbe.2017.16.
Texto completo da fonteLuo, Sang, and Zhen Dong Qian. "Research on Low Temperature Performance of Epoxy Asphalt Mixture." Applied Mechanics and Materials 34-35 (October 2010): 1124–28. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1124.
Texto completo da fonteLiu, Longlong, Jianshu Ouyang, Feilong Li, Jianda Xin, Dahai Huang, and Shuling Gao. "Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine." Materials 11, no. 10 (2018): 1822. http://dx.doi.org/10.3390/ma11101822.
Texto completo da fonteCao, Xing Song, Dong Wei Cao, Shi Xiong Liu, Xio Qiang Yang, and Lin Lan. "Performance Evaluation of a Novel High Durability Epoxy Asphalt Concrete for Bridge Deck Pavements." Applied Mechanics and Materials 488-489 (January 2014): 550–53. http://dx.doi.org/10.4028/www.scientific.net/amm.488-489.550.
Texto completo da fonteJackson, N. Mike, and Ted S. Vinson. "Analysis of Thermal Fatigue Distress of Asphalt Concrete Pavements." Transportation Research Record: Journal of the Transportation Research Board 1545, no. 1 (1996): 43–49. http://dx.doi.org/10.1177/0361198196154500106.
Texto completo da fonteTapsoba, Nouffou, Hassan Baaj, Cédric Sauzéat, Hervé Di Benedetto, and Mohsen Ech. "3D Analysis and Modelling of Thermal Stress Restrained Specimen Test (TSRST) on Asphalt Mixes with RAP and Roofing Shingles." Construction and Building Materials 120 (September 2016): 393–402. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.092.
Texto completo da fonteRaoufi, Kambiz, John Schlitter, Dale Bentz, and Jason Weiss. "Parametric Assessment of Stress Development and Cracking in Internally Cured Restrained Mortars Experiencing Autogenous Deformations and Thermal Loading." Advances in Civil Engineering 2011 (2011): 1–16. http://dx.doi.org/10.1155/2011/870128.
Texto completo da fonteRathore, Mukul, Viktors Haritonovs, and Martins Zaumanis. "Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content." Materials 14, no. 14 (2021): 3793. http://dx.doi.org/10.3390/ma14143793.
Texto completo da fonteCarter, Steve, Khaled Ksaibati, and George Huntington. "Field and Laboratory Evaluations of Hot-Poured Thermoelastic Bituminous Crack Sealing of Asphalt Pavements." Transportation Research Record: Journal of the Transportation Research Board 1933, no. 1 (2005): 113–20. http://dx.doi.org/10.1177/0361198105193300113.
Texto completo da fontePszczola, Marek, and Cezary Szydlowski. "Influence of Bitumen Type and Asphalt Mixture Composition on Low-Temperature Strength Properties According to Various Test Methods." Materials 11, no. 11 (2018): 2118. http://dx.doi.org/10.3390/ma11112118.
Texto completo da fontePham, Nguyen Hoang, Cédric Sauzéat, Hervé Di Benedetto, Juan A. González-León, Gilles Barreto, and Aurélia Nicolaï. "Fatigue and Thermal Cracking of Hot and Warm Bituminous Mixtures with Different RAP Contents." Sustainability 12, no. 23 (2020): 9812. http://dx.doi.org/10.3390/su12239812.
Texto completo da fonteZhai, Yue, Yubai Li, Yan Li, Yunsheng Zhang, Fandong Meng, and Ming Lu. "Impact Compression Test and Numerical Simulation Analysis of Concrete after Thermal Treatment in Complex Stress State." Materials 12, no. 12 (2019): 1938. http://dx.doi.org/10.3390/ma12121938.
Texto completo da fonteStienss, Marcin, and Cezary Szydlowski. "Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures." Materials 13, no. 1 (2020): 202. http://dx.doi.org/10.3390/ma13010202.
Texto completo da fonteFalchetto, Augusto Cannone, Ki Hoon Moon, and Michael P. Wistuba. "Development of a simple correlation between bending beam rheometer and thermal stress restrained specimen test low-temperature properties based on a simplified size effect approach." Road Materials and Pavement Design 18, sup2 (2017): 339–51. http://dx.doi.org/10.1080/14680629.2017.1305147.
Texto completo da fonteHýzl, Petr, Ondřej Dašek, Michal Varaus, et al. "The effect of compaction degree and binder content on performance properties of asphalt mixtures." Baltic Journal of Road and Bridge Engineering 11, no. 3 (2016): 222–32. http://dx.doi.org/10.3846/bjrbe.2016.26.
Texto completo da fonteShirzad, Sharareh, Marwa M. Hassan, Max A. Aguirre, Samuel Cooper, Louay N. Mohammad, and Ioan I. Negulescu. "Laboratory Testing of Self-Healing Polymer Modified Asphalt Mixtures Containing Recycled Asphalt Materials (RAP/RAS)." MATEC Web of Conferences 271 (2019): 03003. http://dx.doi.org/10.1051/matecconf/201927103003.
Texto completo da fonteFortier, Richard, and Ted S. Vinson. "Low-Temperature Cracking and Aging Performance of Modified Asphalt Concrete Specimens." Transportation Research Record: Journal of the Transportation Research Board 1630, no. 1 (1998): 77–86. http://dx.doi.org/10.3141/1630-10.
Texto completo da fonteZhu, Yuefeng, Reyhaneh Rahbar-Rastegar, Yanwei Li, Yaning Qiao, and Chundi Si. "Exploring the Possibility of Using Ionic Copolymer Poly (Ethylene-co-Methacrylic) Acid as Modifier and Self-Healing Agent in Asphalt Binder and Mixture." Applied Sciences 10, no. 2 (2020): 426. http://dx.doi.org/10.3390/app10020426.
Texto completo da fonteYou, Taesun, Yucheng Shi, Louay N. Mohammad, and Samuel B. Cooper. "Laboratory Performance of Asphalt Mixtures Containing Re-Refined Engine Oil Bottoms Modified Asphalt Binders." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 28 (2018): 88–95. http://dx.doi.org/10.1177/0361198118787936.
Texto completo da fonteCrossley, Glen A., and Simon A. M. Hesp. "New Class of Reactive Polymer Modifiers for Asphalt: Mitigation of Low-Temperature Damage." Transportation Research Record: Journal of the Transportation Research Board 1728, no. 1 (2000): 68–74. http://dx.doi.org/10.3141/1728-10.
Texto completo da fonteMensching, David J., Adrian Andriescu, Christopher DeCarlo, Xinjun Li, and Jack S. Youtcheff. "Effect of Extended Aging on Asphalt Materials Containing Re-Refined Engine Oil Bottoms." Transportation Research Record: Journal of the Transportation Research Board 2632, no. 1 (2017): 60–69. http://dx.doi.org/10.3141/2632-07.
Texto completo da fonteStroup-Gardiner, Mary, Dave Newcomb, and Rachel DeSombre. "Characterizing Properties of Asphalt Cement at Cold Temperatures." Transportation Research Record: Journal of the Transportation Research Board 1545, no. 1 (1996): 59–66. http://dx.doi.org/10.1177/0361198196154500108.
Texto completo da fonteYang, Jun, Shirley Ddamba, Riyad UL-Islam, Md Safiuddin, and Susan L. Tighe. "Investigation on use of recycled asphalt shingles in Ontario hot mix asphalt: a Canadian case study." Canadian Journal of Civil Engineering 41, no. 2 (2014): 136–43. http://dx.doi.org/10.1139/cjce-2013-0022.
Texto completo da fonteZemanová, Alena, Radoslav Sovják, and Jiri Litos. "Restrained Shrinkage Test of High Performance Concrete Ring Specimen." Advanced Materials Research 982 (July 2014): 38–43. http://dx.doi.org/10.4028/www.scientific.net/amr.982.38.
Texto completo da fonteLi, Yun Feng, Yan Yao, and Ling Wang. "Shrinkage Cracking Test and Analytical Model for Concrete Considering Creep Behaviour at Early Age." Advanced Materials Research 33-37 (March 2008): 435–40. http://dx.doi.org/10.4028/www.scientific.net/amr.33-37.435.
Texto completo da fonteRoy, Sushanta D., and Simon A. M. Hesp. "Low-Temperature Binder Specification Development: Thermal Stress Restrained Specimen Testing of Asphalt Binders and Mixtures." Transportation Research Record: Journal of the Transportation Research Board 1766, no. 1 (2001): 7–14. http://dx.doi.org/10.3141/1766-02.
Texto completo da fonteZhang, Cai Li, Lian Yu Wei, and Qing Ying Meng. "The Research of Low Temperature Performance of Asphalt Mixture." Advanced Materials Research 168-170 (December 2010): 2507–12. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.2507.
Texto completo da fonteHossain, Akhter B., Brad Pease, and Jason Weiss. "Quantifying Early-Age Stress Development and Cracking in Low Water-to-Cement Concrete: Restrained-Ring Test with Acoustic Emission." Transportation Research Record: Journal of the Transportation Research Board 1834, no. 1 (2003): 24–32. http://dx.doi.org/10.3141/1834-04.
Texto completo da fonteChen, Ke, Hui Hu, Ke Chen, Zhaohui Chen, and Xin Wang. "Cracking Tendency Prediction of High-Performance Cementitious Materials." Advances in Condensed Matter Physics 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/591084.
Texto completo da fonteKeshavarzi, Behrooz, and Y. Richard Kim. "A dissipated pseudo strain energy-based failure criterion for thermal cracking and its verification using thermal stress restrained specimen tests." Construction and Building Materials 233 (February 2020): 117199. http://dx.doi.org/10.1016/j.conbuildmat.2019.117199.
Texto completo da fonteMenu, Bruce, Marc Jolin, and Benoit Bissonnette. "Assessing the Shrinkage Cracking Potential of Concrete Using Ring Specimens with Different Boundary Conditions." Advances in Materials Science and Engineering 2020 (May 7, 2020): 1–13. http://dx.doi.org/10.1155/2020/4842369.
Texto completo da fonteHossain, Akhter B., and Jason Weiss. "The role of specimen geometry and boundary conditions on stress development and cracking in the restrained ring test." Cement and Concrete Research 36, no. 1 (2006): 189–99. http://dx.doi.org/10.1016/j.cemconres.2004.06.043.
Texto completo da fonteChoe, Kyeong Hwan, Kyong Whoan Lee, and Myung Ho Kim. "Effect of Si on the Thermal Stability of Ferritic Heat-Resistant Ductile Iron." Applied Mechanics and Materials 752-753 (April 2015): 205–11. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.205.
Texto completo da fonteBramel, Brian K., Charles W. Dolan, Jay A. Puckett, and Khaled Ksaibati. "Asphalt Plug Joints: Refined Material Tests and Design Guidelines." Transportation Research Record: Journal of the Transportation Research Board 1740, no. 1 (2000): 126–34. http://dx.doi.org/10.3141/1740-16.
Texto completo da fonteIjiri, Masataka, Norihiro Okada, Syouta Kanetou, et al. "Thermal Stress Relaxation and High-Temperature Corrosion of Cr-Mo Steel Processed Using Multifunction Cavitation." Materials 11, no. 11 (2018): 2291. http://dx.doi.org/10.3390/ma11112291.
Texto completo da fonteWakayama, Shuichi. "Characterization of Crack Initiation Behavior in Ceramics under Thermal Shock." Key Engineering Materials 312 (June 2006): 281–86. http://dx.doi.org/10.4028/www.scientific.net/kem.312.281.
Texto completo da fonteArikawa, Jun, and Takeshi Shiono. "Evaluation of Thermal Shock Resistance for Ceramic Materials by Young’s Modulus." Key Engineering Materials 766 (April 2018): 170–74. http://dx.doi.org/10.4028/www.scientific.net/kem.766.170.
Texto completo da fonteCorinaldesi, Valeria, and Giacomo Moriconi. "Evaluation of Recycled Aggregate Concrete Cracking through Ring Test." Applied Mechanics and Materials 174-177 (May 2012): 1475–80. http://dx.doi.org/10.4028/www.scientific.net/amm.174-177.1475.
Texto completo da fonteKoo, Song Heo, and Young Shin Lee. "The Study of Optimum Shape to Evaluation for Thermal Shock Behavior of Graphite." Key Engineering Materials 326-328 (December 2006): 915–18. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.915.
Texto completo da fonteYoun, Kuk Tae, Young Mok Rhyim, Won Jon Yang, Jong Hoon Lee, and Chan Gyu Lee. "Evaluation of Thermal Fatigue Properties of Surface Treated AISI H13 Steel for Aluminum Die-Casting." Key Engineering Materials 326-328 (December 2006): 1173–76. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1173.
Texto completo da fontePao, Yi-Hsin, Scott Badgley, Ratan Govila, Linda Baumgartner, Richard Allor, and Ron Cooper. "Measurement of Mechanical Behavior of High Lead Lead-Tin Solder Joints Subjected to Thermal Cycling." Journal of Electronic Packaging 114, no. 2 (1992): 135–44. http://dx.doi.org/10.1115/1.2906410.
Texto completo da fonteHu and Yu. "Lightning Performance of Copper-Mesh Clad Composite Panels: Test and Simulation." Coatings 9, no. 11 (2019): 727. http://dx.doi.org/10.3390/coatings9110727.
Texto completo da fonteMeng, Song He, Hua Jin, Cheng Hai Xu, and Wei Hua Xie. "The Influential Factors Analysis of Surface Crack Propagation Behavior of ZrB2-20%SiC-10%AlN Ceramic Subjected to Thermal Shock." Advanced Materials Research 486 (March 2012): 166–73. http://dx.doi.org/10.4028/www.scientific.net/amr.486.166.
Texto completo da fonteXian, Cheng Ji, and Hideo Awaji. "Thermal Shock Test for Porous Ceramics Using Water Flow Cooling Method." Advanced Materials Research 11-12 (February 2006): 35–38. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.35.
Texto completo da fonte