Literatura científica selecionada sobre o tema "Tissue"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Tissue".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Tissue"
Schmidt, Christine E., e Jennie M. Baier. "Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering". Biomaterials 21, n.º 22 (novembro de 2000): 2215–31. http://dx.doi.org/10.1016/s0142-9612(00)00148-4.
Texto completo da fonteKishida, Akio, Seiichi Funamoto, Jun Negishi, Yoshihide Hashimoto, Kwangoo Nam, Tsuyoshi Kimura, Toshiya Fujisato e Hisatoshi Kobayashi. "Tissue Engineering with Natural Tissue Matrices". Advances in Science and Technology 76 (outubro de 2010): 125–32. http://dx.doi.org/10.4028/www.scientific.net/ast.76.125.
Texto completo da fonteOkano, T. "Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture". Cell Transplantation 7, n.º 5 (10 de setembro de 1998): 435–42. http://dx.doi.org/10.1016/s0963-6897(98)00030-x.
Texto completo da fonteOkano, Takahisa, e Takehisa Matsuda. "Muscular Tissue Engineering: Capillary-Incorporated Hybrid Muscular Tissues in Vivo Tissue Culture". Cell Transplantation 7, n.º 5 (setembro de 1998): 435–42. http://dx.doi.org/10.1177/096368979800700502.
Texto completo da fonteCriddle, Richard S., Lee D. Hansen, Brian F. Woodfield e H. Dennis Tolley. "Modeling transthyretin (TTR) amyloid diseases, from monomer to amyloid fibrils". PLOS ONE 19, n.º 6 (6 de junho de 2024): e0304891. http://dx.doi.org/10.1371/journal.pone.0304891.
Texto completo da fonteBakhshandeh, Behnaz, Payam Zarrintaj, Mohammad Omid Oftadeh, Farid Keramati, Hamideh Fouladiha, Salma Sohrabi-jahromi e Zarrintaj Ziraksaz. "Tissue engineering; strategies, tissues, and biomaterials". Biotechnology and Genetic Engineering Reviews 33, n.º 2 (3 de julho de 2017): 144–72. http://dx.doi.org/10.1080/02648725.2018.1430464.
Texto completo da fonteHardingham, Tim. "Tissue engineering: Designing for health". Biochemist 25, n.º 5 (1 de outubro de 2003): 19–21. http://dx.doi.org/10.1042/bio02505019.
Texto completo da fonteSahoo, Sambit, Thomas KH Teh, Pengfei He, Siew Lok Toh e James CH Goh. "Interface Tissue Engineering: Next Phase in Musculoskeletal Tissue Repair". Annals of the Academy of Medicine, Singapore 40, n.º 5 (15 de maio de 2011): 245–51. http://dx.doi.org/10.47102/annals-acadmedsg.v40n5p245.
Texto completo da fonteGoud, K. Anand. "Necrotizing Soft Tissue Infections". Journal of Medical Science And clinical Research 05, n.º 02 (10 de fevereiro de 2017): 17509–13. http://dx.doi.org/10.18535/jmscr/v5i2.49.
Texto completo da fonteFrancisco, George, Joel Alan e Benjamin Dylan. "The Partial Tissue Expansions". Dermatology and Dermatitis 2, n.º 3 (15 de abril de 2018): 01–02. http://dx.doi.org/10.31579/2578-8949/030.
Texto completo da fonteTeses / dissertações sobre o assunto "Tissue"
Moreau, Jodie E. "Stimulation of bone marrow stromal cells in the development of tissue engineered ligaments /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2005.
Encontre o texto completo da fonteAdviser: Gregory H. Altman. Submitted to the Dept. of Biology--Biotechnology. Includes bibliographical references (leaves 183-192). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Halse, Tore Egil, e Thomas Tøkje. "Tissue". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18790.
Texto completo da fonteShazly, Tarek (Tarek Michael). "Tissue-material interactions : bioadhesion and tissue response". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54577.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 159-162).
Diverse interactions between soft tissues and implanted biomaterials directly influence the success or failure of therapeutic interventions. The nature and extent of these interactions strongly depend on both the tissue and material in question and can presumably be characterized for any given clinical application. Nevertheless, optimizing biomaterial performance remains a challenge in many implant scenarios due to complex relationships between intrinsic material properties and tissue response. Soft tissue sealants are clinically-relevant biomaterials which impart therapeutic benefit through adhesion to tissue, thus exhibiting a direct functional dependence on tissue-material reactivity. Because adhesion can be rigorously quantified and correlated to the local tissue response, sealants provide an informative platform for studying material properties, soft tissues, and their interplay. We developed a model hydrogel sealant composed of aminated polyethylene glycol and dextran aldehyde (PEG:dextran) that can possess a wide range of bulk and adhesive properties by virtue of constituent polymer modifications. Through comparison to traditional sealants, we established that highly viscoelastic adhesion promotes tissue-sealant interfacial failure resistance without compromising underlying tissue morphology.
(cont.) We analyzed multiple soft tissues to substantiate the notion that natural biochemical variability facilitates the design of tissue-specific sealants which have distinct advantages over more general alternatives. We confirmed that hydrogel-based materials are an attractive material class for ensuring sealant biocompatibility, but found that a marked reduction in adhesive strength following characteristic swell can potentially limit clinical efficacy. To mitigate the swell-induced loss of hydrogel-based sealant functionality, a biomimetic conjugation strategy derived from marine mussel adhesion was applied to PEG:dextran and shown to favorably modulate adhesion. In all phases of this research, we defined material design principles that extend beyond the immediate development of PEG:dextran with potential to enhance the clinical performance of a range of biomaterials.
by Tarek Shazly.
Ph.D.
Tam, Y. Y. A. "Connective tissue growth factor in tissue fibrosis". Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1448702/.
Texto completo da fonteLipworth, Wendy. "Reconfiguring tissue banking consent through enrichment of a restricted debate". Connect to full text, 2005. http://hdl.handle.net/2123/683.
Texto completo da fonteTitle from title screen (viewed 21 May 2008). Submitted in fulfilment of the requirements for the degree of Master of Science to the Unit for the History and Philosophy of Science and Centre for Values, Ethics and Law in Medicine. Includes bibliographical references. Also available in print form.
Deiuliis, Jeffrey Alan. "The metabolic and molecular regulation of adipose triglyceride lipase". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1185546165.
Texto completo da fonteLe, Thua Trung Hau. "Multimodality Treatment of Soft Tissue and Bone Defect: from Tissue Transfer to Tissue Engineering". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/220961.
Texto completo da fonteDoctorat en Sciences médicales (Médecine)
info:eu-repo/semantics/nonPublished
Cristea, Anca. "Ultrasound tissue characterization using speckle statistics". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10329.
Texto completo da fonteThe purpose of ultrasound tissue characterization or Quantitative Ultrasound (QUS) is to differentiate between tissue pathologies by associating model parameters to physical tissue features. The exclusive use of ultrasound for diagnosis would guarantee that the patient does not undergo a procedure that is invasive (e.g. a biopsy), using ionizing radiation (e.g. tomography) or simply uncomfortable and expensive (e.g. MRI). QUS methods extract information on the tissue microstructure from the temporal or spectral content of the acquired ultrasound signals. The temporal radiofrequency (RF) signal and its envelope are of interest because of the speckle patterns created by wave interference, which can be modeled by statistical distributions. The present work proposes to explore the possibility of obtaining reliable QUS estimates by using statistical distributions as models for ultrasound speckle. The estimates consist in the parameters of the respective distributions and are indicators of the scatterer density in the medium. The evaluation is conducted on simulated images, particle phantoms and biophantoms. In the first part, the Generalized Gaussian distribution is used to model the RF signal, and the Nakagami distribution is used to model its envelope. The two distributions show limitations in discriminating media with high scatterer densities, as the values of their shape parameters saturate in the fully developed speckle regime. Therefore, since the formation of fully developed speckle depends on the resolution of the imaging system, characterization can be done only at very high resolutions, corresponding to high frequencies that are not common in clinical ultrasound. An application of the Nakagami model on the second harmonic image shows the potential of the Nakagami shape parameter as a measure of the nonlinearity of the medium. In the second part, the echo envelope was modeled using the Homodyned-K distribution. The scatterer clustering parameter α allows the discrimination of dense media up to a concentration that is higher than the one that limits the Nakagami distribution. However, this limit is difficult to estimate precisely, because the values of α that are characteristic for fully developed speckle suffer from large estimation bias and variance. The bias and the variance can be improved by performing the estimation on a very large amount of data. In the final part, a deconvolution technique designed specifically for ultrasound tissue characterization has been analyzed. Extensive testing has shown it to not be sufficiently robust for clinical applications, since the deconvolved images are not reliable in terms of fidelity to the original reflectivity of the medium
Craddock, Russell. "Structural characterisation of aggrecan in cartilaginous tissues and tissue engineered constructs". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/structural-characterisation-of-aggrecan-in-cartilaginous-tissues-and-tissue-engineered-constructs(d1e72d1e-b0ac-4485-9a05-030a5faf8351).html.
Texto completo da fonteDean, Drew W. Kane Robert R. "Meniscal tissue bonding and exploration of sonochemical tissue modification". Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5291.
Texto completo da fonteLivros sobre o assunto "Tissue"
Hughes, Graham R. V. Connective tissue diseases. 4a ed. Oxford: Blackwell Scientific Publications, 1994.
Encontre o texto completo da fonteO, Phillips Glyn, ed. Advances in tissue banking. Singapore: World Scientific, 1997.
Encontre o texto completo da fonteMinoru, Ueda. Applied tissue engineering. Rijeka, Croatia: InTech, 2011.
Encontre o texto completo da fonteAthanasiou, K. A. Articular cartilage tissue engineering. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool Publishers, 2010.
Encontre o texto completo da fonteMorgan, Jeffrey R., e Martin L. Yarmush. Tissue Engineering. New Jersey: Humana Press, 1998. http://dx.doi.org/10.1385/0896035166.
Texto completo da fonteYoon, Jeong-Yeol. Tissue Engineering. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83696-2.
Texto completo da fonteKesharwani, Rajesh K., Raj K. Keservani e Anil K. Sharma. Tissue Engineering. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003180531.
Texto completo da fonteKumar, Naveen, Vineet Kumar, Sameer Shrivastava, Anil Kumar Gangwar e Sonal Saxena, eds. Tissue Scaffolds. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2425-8.
Texto completo da fonteCowin, Stephen C., e Stephen B. Doty, eds. Tissue Mechanics. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49985-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Tissue"
Mooney, David J., Joseph P. Vacanti e Robert Langer. "Tissue engineering: Tubular tissues". In Yearbook of Cell and Tissue Transplantation 1996–1997, 275–82. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_27.
Texto completo da fonteFon, Deniece, David R. Nisbet, George A. Thouas, Wei Shen e John S. Forsythe. "Tissue Engineering of Organs: Brain Tissues". In Tissue Engineering, 457–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02824-3_22.
Texto completo da fonteLyon, H. "Tissue Processing: VI. Hard Tissues". In Theory and Strategy in Histochemistry, 207–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-73742-8_15.
Texto completo da fonteLim, Diana, Anthony Atala e James J. Yoo. "Tissue Engineered Renal Tissue". In Organ Tissue Engineering, 1–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-18512-1_12-1.
Texto completo da fonteLim, Diana, Anthony Atala e James J. Yoo. "Tissue-Engineered Renal Tissue". In Organ Tissue Engineering, 233–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44211-8_12.
Texto completo da fonteBährle-Rapp, Marina. "tissue". In Springer Lexikon Kosmetik und Körperpflege, 559. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10568.
Texto completo da fonteHan, Seung-Kyu. "Injectable Tissue-Engineered Soft Tissue". In Innovations and Advances in Wound Healing, 263–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46587-5_12.
Texto completo da fonteMahyudin, Ferdiansyah, e Heri Suroto. "Tissue Bank and Tissue Engineering". In Advanced Structured Materials, 207–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14845-8_9.
Texto completo da fonteAdeniran, Adebowale J., e David Chhieng. "Parathyroid Tissue Versus Thyroid Tissue". In Common Diagnostic Pitfalls in Thyroid Cytopathology, 309–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31602-4_19.
Texto completo da fonteZhang, Lu, e Myron Spector. "Tissue Engineering of Musculoskeletal Tissue". In Tissue Engineering, 597–624. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02824-3_27.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Tissue"
Hariri, Alireza, e Jean W. Zu. "Design of a Tissue Resonator Indenter Device for Measurement of Soft Tissue Viscoelastic Properties Using Parametric Identification". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87786.
Texto completo da fonteDeVore, Dale P. "Preparation of Injectable Human Tissue Matrix". In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2509.
Texto completo da fonteVogt, William C., e Christopher G. Rylander. "Effects of Tissue Dehydration on Optical Diffuse Reflectance and Transmittance in Ex Vivo Porcine Skin". In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80935.
Texto completo da fonteWiltsey, Craig, Thomas Christiani, Jesse Williams, Jamie Coulter, Dana Demiduke, Katelynn Toomer, Sherri English et al. "Tissue Engineering of the Intervertebral Disc". In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80349.
Texto completo da fonteLin, Weibin, e Qingjin Peng. "3D Printing Technologies for Tissue Engineering". In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34408.
Texto completo da fonteKim, Ki H., Timothy Ragan, Michael J. R. Previte, Karsten Bahlmann, Brendan A. Harley, Molly S. Stitt, Carrie A. Hendricks et al. "Tissue Informatics: High Throughput Tissue Cytometry". In Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.jtue3.
Texto completo da fonteFeleppa, Driller, Kalisz, Rosado, Fair, Wang, Cookson e Reuter. "Ultrasonic tissue typing of prostate tissue". In Proceedings of IEEE Ultrasonics Symposium ULTSYM-94. IEEE, 1994. http://dx.doi.org/10.1109/ultsym.1994.401871.
Texto completo da fonteYang, Che-Hao, Yang Liu, Wei Li e Roland K. Chen. "Characterization of Tissue Thermal Conductivity During a Tissue Joining Process". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66932.
Texto completo da fonteNossal, Ralph. "Photon Migration in Biological Tissue". In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.mc4.
Texto completo da fonteKlisch, Stephen M., Suzanne E. Holtrichter, Robert L. Sah e Andrew Davol. "A Bimodular Second-Order Orthotropic Stress Constitutive Equation for Cartilage". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59475.
Texto completo da fonteRelatórios de organizações sobre o assunto "Tissue"
Robinson, David Gerald. Tissue Classification. Office of Scientific and Technical Information (OSTI), janeiro de 2015. http://dx.doi.org/10.2172/1177377.
Texto completo da fonteDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, abril de 2006. http://dx.doi.org/10.21236/ada456398.
Texto completo da fonteDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, abril de 2005. http://dx.doi.org/10.21236/ada435025.
Texto completo da fonteDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada415818.
Texto completo da fonteLee, Gordon K., e John Paro. Breast Tissue Expander. Touch Surgery Simulations, maio de 2014. http://dx.doi.org/10.18556/touchsurgery/2014.s0023.
Texto completo da fonteLiu, Jinhua, e Meiqin Luo. Biological Tissue Sensors. Fort Belvoir, VA: Defense Technical Information Center, abril de 1990. http://dx.doi.org/10.21236/ada222817.
Texto completo da fonteSpence, Jody L. A study of a tissue equivalent gelatine based tissue substitute. Office of Scientific and Technical Information (OSTI), novembro de 1992. http://dx.doi.org/10.2172/10110474.
Texto completo da fonteSpence, J. L. A study of a tissue equivalent gelatine based tissue substitute. Office of Scientific and Technical Information (OSTI), novembro de 1992. http://dx.doi.org/10.2172/6833705.
Texto completo da fonteMartinez, Melissa. Lab Basics: Semi-Automated Slice Lab. ConductScience, julho de 2022. http://dx.doi.org/10.55157/cs20220705.
Texto completo da fonteIglehart, J. D. Breast Cancer Tissue Repository. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1998. http://dx.doi.org/10.21236/ada360856.
Texto completo da fonte