Artigos de revistas sobre o tema "Truxene based supramolecular cages"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 49 melhores artigos de revistas para estudos sobre o assunto "Truxene based supramolecular cages".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Benchohra, Amina, Simon Séjourné, Antoine Labrunie, Liam Miller, Enzo Charbonneau, Vincent Carré, Frédéric Aubriet, Magali Allain, Marc Sallé e Sébastien Goeb. "Controlling Chiral Self-Sorting in Truxene-Based Self-Assembled Cages". Inorganics 10, n.º 7 (19 de julho de 2022): 103. http://dx.doi.org/10.3390/inorganics10070103.
Texto completo da fonteRaee, Ehsan, Yuqing Yang e Tianbo Liu. "Supramolecular structures based on metal-organic cages". Giant 5 (março de 2021): 100050. http://dx.doi.org/10.1016/j.giant.2021.100050.
Texto completo da fonteLing, Qing-Hui, Jun-Long Zhu, Yi Qin e Lin Xu. "Naphthalene diimide- and perylene diimide-based supramolecular cages". Materials Chemistry Frontiers 4, n.º 11 (2020): 3176–89. http://dx.doi.org/10.1039/d0qm00540a.
Texto completo da fonteKniazeva, Mariia V., Alexander S. Ovsyannikov, Aida I. Samigullina, Daut R. Islamov, Aidar T. Gubaidullin, Pavel V. Dorovatovskii, Vladimir A. Lazarenko, Svetlana E. Solovieva, Igor S. Antipin e Sylvie Ferlay. "Impact of flexible succinate connectors on the formation of tetrasulfonylcalix[4]arene based nano-sized polynuclear cages: structural diversity and induced chirality study". CrystEngComm 24, n.º 3 (2022): 628–38. http://dx.doi.org/10.1039/d1ce01482j.
Texto completo da fonteYadav, Sarita, Palanisamy Kannan e Guanyinsheng Qiu. "Cavity-based applications of metallo-supramolecular coordination cages (MSCCs)". Organic Chemistry Frontiers 7, n.º 18 (2020): 2842–72. http://dx.doi.org/10.1039/d0qo00681e.
Texto completo da fonteZhang, Hai-Xia, Xiaodong Yan, Yu-Xin Chen, Shu-Heng Zhang, Tao Li, Wang-Kang Han, Ling-Yu Bao, Rui Shen e Zhi-Guo Gu. "A zeolite supramolecular framework with LTA topology based on a tetrahedral metal–organic cage". Chemical Communications 55, n.º 8 (2019): 1120–23. http://dx.doi.org/10.1039/c8cc08965e.
Texto completo da fonteDecker, Gerald E., Gregory R. Lorzing, Meaghan M. Deegan e Eric D. Bloch. "MOF-mimetic molecules: carboxylate-based supramolecular complexes as molecular metal–organic framework analogues". Journal of Materials Chemistry A 8, n.º 8 (2020): 4217–29. http://dx.doi.org/10.1039/c9ta12497g.
Texto completo da fonteTaylor, Christopher G. P., Jerico R. Piper e Michael D. Ward. "Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response". Chemical Communications 52, n.º 37 (2016): 6225–28. http://dx.doi.org/10.1039/c6cc02021f.
Texto completo da fonteLu, Hui-Shu, Wang-Kang Han, Xiaodong Yan, Ya-Xin Xu, Hai-Xia Zhang, Tao Li, Yu Gong, Qing-Tao Hu e Zhi-Guo Gu. "Supramolecular assemblies based on Fe8L12 cubic metal–organic cages: synergistic adsorption and spin-crossover properties". Dalton Transactions 49, n.º 14 (2020): 4220–24. http://dx.doi.org/10.1039/d0dt00353k.
Texto completo da fonteLiu, Wen-Fang, Qi-Ming Qiu, Mo Zhang, Zhao-Min Su, Qingqing An, Hongjin Lv, Zhiyu Jia e Guo-Yu Yang. "Two new Cu-based borate catalysts with cubic supramolecular cages for efficient catalytic hydrogen evolution". Dalton Transactions 49, n.º 29 (2020): 10156–61. http://dx.doi.org/10.1039/d0dt01994a.
Texto completo da fonteGu, Meng-Jie, Yin-Feng Wang, Ying Han e Chuan-Feng Chen. "Recent advances on triptycene derivatives in supramolecular and materials chemistry". Organic & Biomolecular Chemistry 19, n.º 46 (2021): 10047–67. http://dx.doi.org/10.1039/d1ob01818c.
Texto completo da fonteYang, Jiajia, Mohan Bhadbhade, William A. Donald, Hasti Iranmanesh, Evan G. Moore, Hong Yan e Jonathon E. Beves. "Self-assembled supramolecular cages containing ruthenium(ii) polypyridyl complexes". Chemical Communications 51, n.º 21 (2015): 4465–68. http://dx.doi.org/10.1039/c4cc10292d.
Texto completo da fonteJana, Atanu, Steffen Bähring, Masatoshi Ishida, Sébastien Goeb, David Canevet, Marc Sallé, Jan O. Jeppesen e Jonathan L. Sessler. "Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry". Chemical Society Reviews 47, n.º 15 (2018): 5614–45. http://dx.doi.org/10.1039/c8cs00035b.
Texto completo da fonteStruch, N., F. Topić, K. Rissanen e A. Lützen. "Electron-deficient trifluoromethyl-substituted sub-components affect the properties of M4L4 tetrahedral cages". Dalton Transactions 46, n.º 33 (2017): 10809–13. http://dx.doi.org/10.1039/c7dt02182h.
Texto completo da fonteBao, Shu-Jin, Ze-Ming Xu, Tian-Chen Yu, Ying-Lin Song, Heng Wang, Zheng Niu, Xiaopeng Li, Brendan F. Abrahams, Pierre Braunstein e Jian-Ping Lang. "Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages". Research 2022 (24 de fevereiro de 2022): 1–12. http://dx.doi.org/10.34133/2022/9819343.
Texto completo da fonteLi, LiLi, Linlin Yang, Xuezhao Li, Jing Wang, Xin Liu e Cheng He. "Supramolecular Catalysis of Acyl Transfer within Zinc Porphyrin-Based Metal–Organic Cages". Inorganic Chemistry 60, n.º 12 (4 de junho de 2021): 8802–10. http://dx.doi.org/10.1021/acs.inorgchem.1c00745.
Texto completo da fonteBravin, Carlo, Elena Badetti, Rakesh Puttreddy, Fangfang Pan, Kari Rissanen, Giulia Licini e Cristiano Zonta. "Binding Profiles of Self-Assembled Supramolecular Cages from ESI-MS Based Methodology". Chemistry - A European Journal 24, n.º 12 (31 de janeiro de 2018): 2936–43. http://dx.doi.org/10.1002/chem.201704725.
Texto completo da fonteChen, Shi-Gui, Zhi-Xiong Zhao, Xiao-Nan Jiang, Lu Wang, Tian-You Zhou, Cheng-Lu Lu, Xin Zhao et al. "Temperature-Responsive Chiral (A)6 B Supramolecular Cages Based on Conformational Preferences". Chemistry - An Asian Journal 11, n.º 4 (25 de novembro de 2015): 465–69. http://dx.doi.org/10.1002/asia.201501090.
Texto completo da fonteKuang, Xiaofei, Shanci Chen, Lingyi Meng, Jing Chen, Xiaoyuan Wu, Guanhua Zhang, Guiming Zhong, Ting Hu, Yuhang Li e Can-Zhong Lu. "Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction". Chemical Communications 55, n.º 11 (2019): 1643–46. http://dx.doi.org/10.1039/c8cc10269d.
Texto completo da fonteLiu, Die, Haisheng Liu, Bo Song, Mingzhao Chen, Jian Huang, Jun Wang, Xiaoyu Yang, Wei Sun, Xiaopeng Li e Pingshan Wang. "Terpyridine-based metallo-organic cages and supramolecular gelation by coordination-driven self-assembly and host–guest interaction". Dalton Transactions 47, n.º 40 (2018): 14227–32. http://dx.doi.org/10.1039/c8dt01044g.
Texto completo da fonteKumar, Atul, Rupak Saha e Partha Sarathi Mukherjee. "Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization". Chemical Science 12, n.º 14 (2021): 5319–29. http://dx.doi.org/10.1039/d1sc00097g.
Texto completo da fonteRivera, Daniel G., e Ludger A. Wessjohann. "Supramolecular Compounds from Multiple Ugi Multicomponent Macrocyclizations: Peptoid-based Cryptands, Cages, and Cryptophanes". Journal of the American Chemical Society 128, n.º 22 (junho de 2006): 7122–23. http://dx.doi.org/10.1021/ja060720r.
Texto completo da fonteLi, Na, Xue-Na Yin e Ru-Dan Huang. "Encapsulation of polyoxometalates into supramolecular cages based on flexible ligands: Synthesis, structure and properties". Inorganica Chimica Acta 429 (abril de 2015): 216–20. http://dx.doi.org/10.1016/j.ica.2015.02.009.
Texto completo da fonteSun, Na, Shi‐Qiang Wang, Yassin H. Andaloussi, Guorui Liu, Tonghuan Fu, Jialiang Xu, Michael J. Zaworotko e Xian‐He Bu. "Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Poly‐Aromatic Hydrocarbons". Small 16, n.º 47 (novembro de 2020): 2001377. http://dx.doi.org/10.1002/smll.202001377.
Texto completo da fonteMiljkovic, Ana, Sonia La Cognata, Greta Bergamaschi, Mauro Freccero, Antonio Poggi e Valeria Amendola. "Towards Building Blocks for Supramolecular Architectures Based on Azacryptates". Molecules 25, n.º 7 (9 de abril de 2020): 1733. http://dx.doi.org/10.3390/molecules25071733.
Texto completo da fonteBravin, Carlo, Andrea Guidetti, Giulia Licini e Cristiano Zonta. "Supramolecular cages as differential sensors for dicarboxylate anions: guest length sensing using principal component analysis of ESI-MS and 1H-NMR raw data". Chemical Science 10, n.º 12 (2019): 3523–28. http://dx.doi.org/10.1039/c8sc05527k.
Texto completo da fonteVlassa, Mihaela, Gheorghe Borodi, Cristian Silvestru e Mircea Vlassa. "Hydrogen bonding-based 3D supramolecular architecture of [Cu(CHA)2][TCM]·11H2O". Open Chemistry 12, n.º 1 (1 de janeiro de 2014): 14–24. http://dx.doi.org/10.2478/s11532-013-0350-0.
Texto completo da fonteCarlotto, Silvia, Lidia Armelao e Marzio Rancan. "Helicate versus Mesocate in Quadruple-Stranded Lanthanide Cages: A Computational Insight". International Journal of Molecular Sciences 23, n.º 18 (13 de setembro de 2022): 10619. http://dx.doi.org/10.3390/ijms231810619.
Texto completo da fonteDang, Li-Long, Tian Chen, Ting-Ting Zhang, Ting-Ting Li, Jun-Liang Song, Ke-Jia Zhang e Lu-Fang Ma. "Size-Induced Highly Selective Synthesis of Organometallic Rectangular Macrocycles and Heterometallic Cage Based on Half-Sandwich Rhodium Building Block". Molecules 27, n.º 12 (10 de junho de 2022): 3756. http://dx.doi.org/10.3390/molecules27123756.
Texto completo da fonteRen, Huimei, Shaozhou Zhu e Guojun Zheng. "Nanoreactor Design Based on Self-Assembling Protein Nanocages". International Journal of Molecular Sciences 20, n.º 3 (30 de janeiro de 2019): 592. http://dx.doi.org/10.3390/ijms20030592.
Texto completo da fonteFujita, Makoto, e Katsuyuki Ogura. "Supramolecular Self-Assembly of Macrocycles, Catenanes, and Cages through Coordination of Pyridine-Based Ligands to Transition Metals". Bulletin of the Chemical Society of Japan 69, n.º 6 (junho de 1996): 1471–82. http://dx.doi.org/10.1246/bcsj.69.1471.
Texto completo da fonteZhang, Xing-Xing, Jian Li e Yun-Yin Niu. "A Review of Crystalline Multibridged Cyclophane Cages: Synthesis, Their Conformational Behavior, and Properties". Molecules 27, n.º 20 (20 de outubro de 2022): 7083. http://dx.doi.org/10.3390/molecules27207083.
Texto completo da fonteZhang, Zi-En, Yuan-Yuan An, Bo Zheng, Jin-Ping Chang e Ying-Feng Han. "Hierarchical self-assembly of crown ether based metal-carbene cages into multiple stimuli-responsive cross-linked supramolecular metallogel". Science China Chemistry 64, n.º 7 (11 de junho de 2021): 1177–83. http://dx.doi.org/10.1007/s11426-021-9977-5.
Texto completo da fonteUhl, Werner, Christina Stefaniak, Matthias Voß, Marcus Layh, Friedhelm Rogel e Jutta Kösters. "Supramolecular Chemistry Based on Gallium-Gallium Single Bonds - Formation of Large Heterocycles and Cages with up to Twelve Gallium Atoms". Zeitschrift für anorganische und allgemeine Chemie 641, n.º 2 (4 de dezembro de 2014): 253–60. http://dx.doi.org/10.1002/zaac.201400517.
Texto completo da fonteShi, Wen‐Jie, Dan Liu, Xin Li, Sha Bai, Yao‐Yu Wang e Ying‐Feng Han. "Supramolecular Coordination Cages Based on N‐Heterocyclic Carbene‐Gold(I) Ligands and Their Precursors: Self‐Assembly, Structural Transformation and Guest‐Binding Properties". Chemistry – A European Journal 27, n.º 29 (22 de abril de 2021): 7853–61. http://dx.doi.org/10.1002/chem.202100710.
Texto completo da fonteSumby, Christopher J., Julie Fisher, Timothy J. Prior e Michaele J. Hardie. "Tris(pyridylmethylamino)cyclotriguaiacylene Cavitands: An Investigation of the Solution and Solid-State Behaviour of Metallo-Supramolecular Cages and Cavitand-Based Coordination Polymers". Chemistry - A European Journal 12, n.º 11 (3 de abril de 2006): 2945–59. http://dx.doi.org/10.1002/chem.200501542.
Texto completo da fonteColomban, Cédric, Bastien Châtelet e Alexandre Martinez. "Different Strategies for Obtaining Enantiopure Hemicryptophanes". Synthesis 51, n.º 10 (24 de abril de 2019): 2081–99. http://dx.doi.org/10.1055/s-0037-1612420.
Texto completo da fonteBilyachenko, Alexey N., Ivan S. Arteev, Victor N. Khrustalev, Anna Y. Zueva, Lidia S. Shul’pina, Elena S. Shubina, Nikolay S. Ikonnikov e Georgiy B. Shul’pin. "Cagelike Octacopper Methylsilsesquioxanes: Self-Assembly in The Focus of Alkaline Metal Ion Influence—Synthesis, Structure, and Catalytic Activity". Molecules 28, n.º 3 (26 de janeiro de 2023): 1211. http://dx.doi.org/10.3390/molecules28031211.
Texto completo da fonteWang, Zhi, Hai-Feng Su, Yuan-Zhi Tan, Stan Schein, Shui-Chao Lin, Wei Liu, Shu-Ao Wang et al. "Assembly of silver Trigons into a buckyball-like Ag180nanocage". Proceedings of the National Academy of Sciences 114, n.º 46 (27 de outubro de 2017): 12132–37. http://dx.doi.org/10.1073/pnas.1711972114.
Texto completo da fonteAstakhov, Grigorii, Mikhail Levitsky, Alexander Korlyukov, Lidia Shul’pina, Elena Shubina, Nikolay Ikonnikov, Anna Vologzhanina et al. "New Cu4Na4- and Cu5-Based Phenylsilsesquioxanes. Synthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile". Catalysts 9, n.º 9 (21 de agosto de 2019): 701. http://dx.doi.org/10.3390/catal9090701.
Texto completo da fonteShi, Wen‐Jie, Dan Liu, Xin Li, Sha Bai, Yao‐Yu Wang e Ying‐Feng Han. "Cover Feature: Supramolecular Coordination Cages Based on N‐Heterocyclic Carbene‐Gold(I) Ligands and Their Precursors: Self‐Assembly, Structural Transformation and Guest‐Binding Properties (Chem. Eur. J. 29/2021)". Chemistry – A European Journal 27, n.º 29 (14 de maio de 2021): 7811. http://dx.doi.org/10.1002/chem.202101551.
Texto completo da fonteYue, Kan, Mingjun Huang, Ryan L. Marson, Jinlin He, Jiahao Huang, Zhe Zhou, Jing Wang et al. "Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants". Proceedings of the National Academy of Sciences 113, n.º 50 (28 de novembro de 2016): 14195–200. http://dx.doi.org/10.1073/pnas.1609422113.
Texto completo da fonteBegato, Federico, Roberto Penasa, Giulia Licini e Cristiano Zonta. "Straight from the bottle! Wine and juice dicarboxylic acids as templates for supramolecular cage self-assembly". Chemical Communications, 2021. http://dx.doi.org/10.1039/d1cc03804d.
Texto completo da fonteZhang, Yi-Fan, Ya-Wen Zhang, Xin Li, Li-Ying Sun e Ying-Feng Han. "Synthesis of Triarylborane-Centered N-Heterocyclic Carbene Cages with Tunable Photophysical Properties". Chemical Communications, 2023. http://dx.doi.org/10.1039/d2cc06584c.
Texto completo da fontePooleIII, David, Eduard Bobylev, Simon Mathew e Joost N. H. Reek. "Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages". Chemical Science, 2022. http://dx.doi.org/10.1039/d2sc03154j.
Texto completo da fonteEdwardson, Thomas G. W., Stephan Tetter e Donald Hilvert. "Two-tier supramolecular encapsulation of small molecules in a protein cage". Nature Communications 11, n.º 1 (26 de outubro de 2020). http://dx.doi.org/10.1038/s41467-020-19112-1.
Texto completo da fonteBenke, Bahiru Punja, Tobias Kirschbaum, Jürgen Graf, Jürgen H. Gross e Michael Mastalerz. "Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions". Nature Chemistry, 1 de dezembro de 2022. http://dx.doi.org/10.1038/s41557-022-01094-w.
Texto completo da fonteLiu, Guoliang, Mi Zhou, Kongzhao Su, Ravichandar Babarao, Daqiang Yuan e Maochun Hong. "Stabilizing the Extrinsic Porosity in Metal–Organic Cages-Based Supramolecular Framework by In Situ Catalytic Polymerization". CCS Chemistry, 18 de agosto de 2020, 1382–90. http://dx.doi.org/10.31635/ccschem.020.202000263.
Texto completo da fonteLi, Kang, Kai Wu, Yan-Zhong Fan, Jing Guo, Yu-Lin Lu, Yuan-Fan Wang, Guillaume Maurin e Cheng-Yong Su. "Acidic open-cage solution containing basic cage-confined nanospaces for multipurpose catalysis". National Science Review, 20 de agosto de 2021. http://dx.doi.org/10.1093/nsr/nwab155.
Texto completo da fonte