Artigos de revistas sobre o tema "Turbulence"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Turbulence".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Atac, Omer Faruk, Hyunsu Lee, and Seoksu Moon. "Detecting ultrafast turbulent oscillations in near-nozzle discharged liquid jet using x-ray phase-contrast imaging with MHz frequency." Physics of Fluids 35, no. 4 (2023): 045102. http://dx.doi.org/10.1063/5.0143351.
Texto completo da fonteSouza, José Francisco Almeida de, José Luiz Lima de Azevedo, Leopoldo Rota de Oliveira, Ivan Dias Soares, and Maurício Magalhães Mata. "TURBULENCE MODELING IN GEOPHYSICAL FLOWS – PART I – FIRST-ORDER TURBULENT CLOSURE MODELING." Revista Brasileira de Geofísica 32, no. 1 (2014): 31. http://dx.doi.org/10.22564/rbgf.v32i1.395.
Texto completo da fonteBašták Ďurán, Ivan, and Pascal Marquet. "Les travaux sur la turbulence : les origines, Toucans, Cost-ES0905 et influence de l'entropie." La Météorologie, no. 112 (2021): 079. http://dx.doi.org/10.37053/lameteorologie-2021-0023.
Texto completo da fonteLiu, Xianlong, Fei Wang, Minghui Zhang, and Yangjian Cai. "Effects of Atmospheric Turbulence on Lensless Ghost Imaging with Partially Coherent Light." Applied Sciences 8, no. 9 (2018): 1479. http://dx.doi.org/10.3390/app8091479.
Texto completo da fonteCortes, Franco L., and Santiago Márquez Damián. "Modificación del Modelo k-omega SST para la Obtención del Perfil de Energía Cinética Turbulenta: Flujo en Placa Plana." Mecánica Computacional 41, no. 6 (2025): 333–41. https://doi.org/10.70567/mc.v41i6.33.
Texto completo da fonteMarxen, Olaf, and Tamer A. Zaki. "Turbulence in intermittent transitional boundary layers and in turbulence spots." Journal of Fluid Mechanics 860 (December 5, 2018): 350–83. http://dx.doi.org/10.1017/jfm.2018.822.
Texto completo da fonteBaumert, H. Z., and H. Peters. "Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear." Ocean Science Discussions 5, no. 4 (2008): 545–80. http://dx.doi.org/10.5194/osd-5-545-2008.
Texto completo da fonteXie, Aojie, Wenhui Yan та Junwei Zhou. "Calculation of a turbulent boundary layer on a flat plate using the PAFV-ω turbulence model". Journal of Physics: Conference Series 2977, № 1 (2025): 012049. https://doi.org/10.1088/1742-6596/2977/1/012049.
Texto completo da fonteBaumert, H. Z., and H. Peters. "Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear." Ocean Science 5, no. 1 (2009): 47–58. http://dx.doi.org/10.5194/os-5-47-2009.
Texto completo da fonteDonnelly, Russell J., and Charles E. Swanson. "Quantum turbulence." Journal of Fluid Mechanics 173 (December 1986): 387–429. http://dx.doi.org/10.1017/s0022112086001210.
Texto completo da fonteDing Xiao-Guan, Zhao Kai-Jun, Xie Yao-Yu, et al. "Effects of turbulence spreading and symmetry breaking on edge shear flow during sawtooth cycles in J-TEXT tokamak." Acta Physica Sinica 74, no. 4 (2025): 0. https://doi.org/10.7498/aps.74.20241364.
Texto completo da fonteWang, Zhenchuan, Guoli Qi, and Meijun Li. "Discussion on improved method of turbulence model for supercritical water flow and heat transfer." Thermal Science 24, no. 5 Part A (2020): 2729–41. http://dx.doi.org/10.2298/tsci190813007w.
Texto completo da fonteWang, B. B., G. P. Zank, L. Adhikari, and L. L. Zhao. "On the Conservation of Turbulence Energy in Turbulence Transport Models." Astrophysical Journal 928, no. 2 (2022): 176. http://dx.doi.org/10.3847/1538-4357/ac596e.
Texto completo da fonteKadantsev, Evgeny, Evgeny Mortikov, Andrey Glazunov, Nathan Kleeorin, and Igor Rogachevskii. "On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence." Nonlinear Processes in Geophysics 31, no. 3 (2024): 395–408. http://dx.doi.org/10.5194/npg-31-395-2024.
Texto completo da fonteMIYAUCHI, Toshio. "Turbulence and Turbulent Combustion." TRENDS IN THE SCIENCES 19, no. 4 (2014): 4_44–4_48. http://dx.doi.org/10.5363/tits.19.4_44.
Texto completo da fonteVolino, R. J., and T. W. Simon. "Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results." Journal of Heat Transfer 119, no. 3 (1997): 427–32. http://dx.doi.org/10.1115/1.2824115.
Texto completo da fonteSHAKINA, N. P., and E. N. SKRIPTUNOVA. "STATE OF THE ART IN STUDYING AND FORECASTING AVIATION AFFECTING TURBULENCE IN THE FREE ATMOSPHERE." Meteorologiya i Gidrologiya, no. 8 (August 2024): 104–25. https://doi.org/10.52002/0130-2906-2024-8-104-125.
Texto completo da fonteLEVICH, E. "NEW DEVELOPMENTS AND CLASSICAL THEORIES OF TURBULENCE." International Journal of Modern Physics B 10, no. 18n19 (1996): 2325–92. http://dx.doi.org/10.1142/s0217979296001057.
Texto completo da fonteLiang, Shi-Min, Jian-Fu Zhang, Na-Na Gao, and Hua-Ping Xiao. "Magnetic-reconnection-driven Turbulence and Turbulent Reconnection Acceleration." Astrophysical Journal 952, no. 2 (2023): 93. http://dx.doi.org/10.3847/1538-4357/acdc18.
Texto completo da fonteBałdyga, J., and R. Pohorecki. "Influence of Turbulent Mechanical Stresses on Microorganisms." Applied Mechanics Reviews 51, no. 1 (1998): 121–40. http://dx.doi.org/10.1115/1.3098987.
Texto completo da fonteTsai, Wu-ting, Shi-ming Chen, and Guan-hung Lu. "Numerical Evidence of Turbulence Generated by Nonbreaking Surface Waves." Journal of Physical Oceanography 45, no. 1 (2015): 174–80. http://dx.doi.org/10.1175/jpo-d-14-0121.1.
Texto completo da fonteVerma, Mahendra K. "Variable energy flux in turbulence." Journal of Physics A: Mathematical and Theoretical 55, no. 1 (2021): 013002. http://dx.doi.org/10.1088/1751-8121/ac354e.
Texto completo da fonteLiu, Zhenchen, Peiqing Liu, Hao Guo, and Tianxiang Hu. "Experimental investigations of turbulent decaying behaviors in the core-flow region of a propeller wake." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 2 (2019): 319–29. http://dx.doi.org/10.1177/0954410019865702.
Texto completo da fonteBlackmore, T., W. M. J. Batten, and A. S. Bahaj. "Influence of turbulence on the wake of a marine current turbine simulator." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2170 (2014): 20140331. http://dx.doi.org/10.1098/rspa.2014.0331.
Texto completo da fonteReichl, Brandon G., Dong Wang, Tetsu Hara, Isaac Ginis, and Tobias Kukulka. "Langmuir Turbulence Parameterization in Tropical Cyclone Conditions." Journal of Physical Oceanography 46, no. 3 (2016): 863–86. http://dx.doi.org/10.1175/jpo-d-15-0106.1.
Texto completo da fonteHORCHANI, SAMAH CHEMLI, and MAHMOUD ZOUAOUI. "ENVIRONMENT TURBULENCE EFFECT ON THE DYNAMICS OF INTELLECTUAL CAPITAL ACCUMULATION AND AMBIDEXTROUS INNOVATION." International Journal of Innovation Management 25, no. 05 (2021): 2150058. http://dx.doi.org/10.1142/s1363919621500584.
Texto completo da fonteThole, K. A., and D. G. Bogard. "High Freestream Turbulence Effects on Turbulent Boundary Layers." Journal of Fluids Engineering 118, no. 2 (1996): 276–84. http://dx.doi.org/10.1115/1.2817374.
Texto completo da fonteRadomsky, R. W., and K. A. Thole. "Measurements and Predictions of a Highly Turbulent Flowfield in a Turbine Vane Passage." Journal of Fluids Engineering 122, no. 4 (2000): 666–76. http://dx.doi.org/10.1115/1.1313244.
Texto completo da fonteSullivan, Peter P., and James C. McWilliams. "Oceanic Frontal Turbulence." Journal of Physical Oceanography 54, no. 2 (2024): 333–58. http://dx.doi.org/10.1175/jpo-d-23-0033.1.
Texto completo da fonteStieger, R. D., and H. P. Hodson. "The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage." Journal of Turbomachinery 127, no. 2 (2005): 388–94. http://dx.doi.org/10.1115/1.1811094.
Texto completo da fontePinsky, Mark, and Alexander Khain. "Convective and Turbulent Motions in Nonprecipitating Cu. Part III: Characteristics of Turbulence Motions." Journal of the Atmospheric Sciences 80, no. 2 (2023): 457–71. http://dx.doi.org/10.1175/jas-d-21-0223.1.
Texto completo da fonteReis, J. C., and C. H. Kruger. "Turbulence suppression in combustion-driven magnetohydrodynamic channels." Journal of Fluid Mechanics 188 (March 1988): 147–57. http://dx.doi.org/10.1017/s0022112088000679.
Texto completo da fonteDower, John F., Pierre Pepin, and William C. Leggett. "Enhanced gut fullness and an apparent shift in size selectivity by radiated shanny (Ulvaria subbifurcata) larvae in response to increased turbulence." Canadian Journal of Fisheries and Aquatic Sciences 55, no. 1 (1998): 128–42. http://dx.doi.org/10.1139/f97-225.
Texto completo da fonteDai, Qi, Kun Luo, Tai Jin, and Jianren Fan. "Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence." Journal of Fluid Mechanics 832 (October 26, 2017): 438–82. http://dx.doi.org/10.1017/jfm.2017.672.
Texto completo da fonteNAKABAYASHI, Koichi, Osami KITOH, and Yoshitaka KATOU. "Turbulence Statistics of CouettePoiseuille Turbulent Flow. 1st Report. Turbulence Intensities." Transactions of the Japan Society of Mechanical Engineers Series B 64, no. 626 (1998): 3272–78. http://dx.doi.org/10.1299/kikaib.64.3272.
Texto completo da fonteYamamoto, K., T. Ishida, T. Watanabe, and K. Nagata. "Experimental and numerical investigation of compressibility effects on velocity derivative flatness in turbulence." Physics of Fluids 34, no. 5 (2022): 055101. http://dx.doi.org/10.1063/5.0085423.
Texto completo da fonteZhu, Yunzhou, Huan Nie, Qian Liu, Yi Yang, and Jianlei Zhang. "Research on the Use of an Ocean Turbulence Bubble Simulation Model to Analyze Wireless Optical Transmission Characteristics." Electronics 13, no. 13 (2024): 2626. http://dx.doi.org/10.3390/electronics13132626.
Texto completo da fonteFarrell, Brian F., and Petros J. Ioannou. "A Theory of Baroclinic Turbulence." Journal of the Atmospheric Sciences 66, no. 8 (2009): 2444–54. http://dx.doi.org/10.1175/2009jas2989.1.
Texto completo da fonteNi Putu Tiana Verayanti and I. Kadek Nova Arta Kusuma. "SIMULASI NUMERIK MEKANISME TURBULENSI DEKAT AWAN KONVEKTIF." Jurnal Sains & Teknologi Modifikasi Cuaca 22, no. 1 (2021): 25–33. http://dx.doi.org/10.29122/jstmc.v22i1.4560.
Texto completo da fonteLv, Alex, Lile Wang, Renyue Cen, and Luis C. Ho. "Cloud Crushing and Dissipation of Uniformly Driven Adiabatic Turbulence in Circumgalactic Media." Astrophysical Journal 977, no. 2 (2024): 274. https://doi.org/10.3847/1538-4357/ad8f3d.
Texto completo da fonteGermano, M. "Turbulence: the filtering approach." Journal of Fluid Mechanics 238 (May 1992): 325–36. http://dx.doi.org/10.1017/s0022112092001733.
Texto completo da fonteKaminski, A. K., and W. D. Smyth. "Stratified shear instability in a field of pre-existing turbulence." Journal of Fluid Mechanics 862 (January 11, 2019): 639–58. http://dx.doi.org/10.1017/jfm.2018.973.
Texto completo da fonteSEO, YONGWON, HAENG SIK KO, and SANGYOUNG SON. "MULTIFRACTAL CHARACTERISTICS OF AXISYMMETRIC JET TURBULENCE INTENSITY FROM RANS NUMERICAL SIMULATION." Fractals 26, no. 01 (2018): 1850008. http://dx.doi.org/10.1142/s0218348x18500081.
Texto completo da fonteBarkley, D. "Taming turbulent fronts by bending pipes." Journal of Fluid Mechanics 872 (June 4, 2019): 1–4. http://dx.doi.org/10.1017/jfm.2019.340.
Texto completo da fonteLe, Thai-Hoa, and Dong-Anh Nguyen. "TEMPORO-SPECTRAL COHERENT STRUCTURE OF TURBULENCE AND PRESSURE USING FOURIER AND WAVELET TRANSFORMS." ASEAN Journal on Science and Technology for Development 25, no. 2 (2017): 405–17. http://dx.doi.org/10.29037/ajstd.271.
Texto completo da fonteMahmoudi, Mahsa, and Mohammad Ali Banihashemi. "Analytical and numerical investigation of mechanical energy balance and energy loss of three-dimensional steady turbulent flows in open-channels." Journal of Hydrology and Hydromechanics 70, no. 2 (2022): 222–33. http://dx.doi.org/10.2478/johh-2022-0011.
Texto completo da fonteRuan, W., L. Yan, and R. Keppens. "Magnetohydrodynamic Turbulence Formation in Solar Flares: 3D Simulation and Synthetic Observations." Astrophysical Journal 947, no. 2 (2023): 67. http://dx.doi.org/10.3847/1538-4357/ac9b4e.
Texto completo da fonteMadaliev, Murodil, Zokhidjon Abdulkhaev, Jamshidbek Otajonov, et al. "Comparison of numerical results of turbulence models for the problem of heat transfer in turbulent molasses." E3S Web of Conferences 508 (2024): 05007. http://dx.doi.org/10.1051/e3sconf/202450805007.
Texto completo da fonteGuerra, Maricarmen, and Jim Thomson. "Turbulence Measurements from Five-Beam Acoustic Doppler Current Profilers." Journal of Atmospheric and Oceanic Technology 34, no. 6 (2017): 1267–84. http://dx.doi.org/10.1175/jtech-d-16-0148.1.
Texto completo da fonteČantrak, Đorđe S., and Novica Z. Janković. "High speed stereoscopic PIV investigation of the statistical characteristics of the axially restricted turbulent swirl flow behind the axial fan in pipe." Advances in Mechanical Engineering 14, no. 11 (2022): 168781322211305. http://dx.doi.org/10.1177/16878132221130563.
Texto completo da fonte