Artigos de revistas sobre o tema "Two-layers neural networks"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Two-layers neural networks".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wei, Chih-Chiang. "Comparison of River Basin Water Level Forecasting Methods: Sequential Neural Networks and Multiple-Input Functional Neural Networks". Remote Sensing 12, n.º 24 (20 de dezembro de 2020): 4172. http://dx.doi.org/10.3390/rs12244172.
Texto completo da fonteYin, Chun Hua, Jia Wei Chen e Lei Chen. "Weight to Vision Neural Network Information Processing Influence Research". Advanced Materials Research 605-607 (dezembro de 2012): 2131–36. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.2131.
Texto completo da fonteCarpenter, William C., e Margery E. Hoffman. "Guidelines for the selection of network architecture". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11, n.º 5 (novembro de 1997): 395–408. http://dx.doi.org/10.1017/s0890060400003322.
Texto completo da fonteBaptista, Marcia, Helmut Prendinger e Elsa Henriques. "Prognostics in Aeronautics with Deep Recurrent Neural Networks". PHM Society European Conference 5, n.º 1 (22 de julho de 2020): 11. http://dx.doi.org/10.36001/phme.2020.v5i1.1230.
Texto completo da fontePAUGAM-MOISY, HÉLÈNE. "HOW TO MAKE GOOD USE OF MULTILAYER NEURAL NETWORKS". Journal of Biological Systems 03, n.º 04 (dezembro de 1995): 1177–91. http://dx.doi.org/10.1142/s0218339095001064.
Texto completo da fonteVetrov, Igor A., e Vladislav V. Podtopelny. "Features of building neural networks taking into account the specifics of their training to solve the tasks of searching for network attacks". Proceedings of Tomsk State University of Control Systems and Radioelectronics 26, n.º 2 (2023): 42–50. http://dx.doi.org/10.21293/1818-0442-2023-26-2-42-50.
Texto completo da fontePetzka, Henning, Martin Trimmel e Cristian Sminchisescu. "Notes on the Symmetries of 2-Layer ReLU-Networks". Proceedings of the Northern Lights Deep Learning Workshop 1 (6 de fevereiro de 2020): 6. http://dx.doi.org/10.7557/18.5150.
Texto completo da fonteLamy, Lucas, e Paulo Henrique Siqueira. "The Null Layer: increasing convolutional neural network efficiency". Caderno Pedagógico 22, n.º 6 (4 de abril de 2025): e15344. https://doi.org/10.54033/cadpedv22n6-050.
Texto completo da fonteShpinareva, Irina M., Anastasia A. Yakushina, Lyudmila A. Voloshchuk e Nikolay D. Rudnichenko. "Detection and classification of network attacks using the deep neural network cascade". Herald of Advanced Information Technology 4, n.º 3 (15 de outubro de 2021): 244–54. http://dx.doi.org/10.15276/hait.03.2021.4.
Texto completo da fonteChen, Jingfeng. "Spam mail classification using back propagation neural networks". Applied and Computational Engineering 5, n.º 1 (14 de junho de 2023): 438–49. http://dx.doi.org/10.54254/2755-2721/5/20230617.
Texto completo da fonteHuang, Hong-Hua, Jian-Fei Luo, Feng Gan e Philip K. Hopke. "Two Revised Deep Neural Networks and Their Applications in Quantitative Analysis Based on Near-Infrared Spectroscopy". Applied Sciences 13, n.º 14 (23 de julho de 2023): 8494. http://dx.doi.org/10.3390/app13148494.
Texto completo da fonteKhodnevych, Yaroslav V., e Dmytro V. Stefanyshyn. "Do we need a more sophisticated multilayer artificial neural network to compute roughness coefficient?" Environmental safety and natural resources 48, n.º 4 (26 de dezembro de 2023): 170–82. http://dx.doi.org/10.32347/2411-4049.2023.4.170-182.
Texto completo da fonteMezher, Liqaa Saadi. "Design and implementation hamming neural network with VHDL". Indonesian Journal of Electrical Engineering and Computer Science 19, n.º 3 (1 de setembro de 2020): 1469. http://dx.doi.org/10.11591/ijeecs.v19.i3.pp1469-1479.
Texto completo da fonteHayati, Mohsen, e Kaveh Darabi. "Modeling and Simulation of Turbogenerator Using Computational Intelligence". Applied Mechanics and Materials 110-116 (outubro de 2011): 5211–15. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5211.
Texto completo da fonteYang, Linrang. "Predicting consumer acceptance of automobiles based on deep learning and traditional machine learning algorithms". Applied and Computational Engineering 27, n.º 1 (11 de dezembro de 2023): 30–37. http://dx.doi.org/10.54254/2755-2721/27/20230119.
Texto completo da fonteYang, Linrang. "Predicting consumer acceptance of automobiles based on deep learning and traditional machine learning algorithms". Applied and Computational Engineering 27, n.º 9 (11 de dezembro de 2023): 30–37. http://dx.doi.org/10.54254/2755-2721/27/ojs/20230119.
Texto completo da fonteFirsov, Nikita, Evgeny Myasnikov, Valeriy Lobanov, Roman Khabibullin, Nikolay Kazanskiy, Svetlana Khonina, Muhammad A. Butt e Artem Nikonorov. "HyperKAN: Kolmogorov–Arnold Networks Make Hyperspectral Image Classifiers Smarter". Sensors 24, n.º 23 (30 de novembro de 2024): 7683. https://doi.org/10.3390/s24237683.
Texto completo da fonteOH, SUNG-KWUN, DONG-WON KIM e WITOLD PEDRYCZ. "HYBRID FUZZY POLYNOMIAL NEURAL NETWORKS". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, n.º 03 (junho de 2002): 257–80. http://dx.doi.org/10.1142/s0218488502001478.
Texto completo da fonteYildirim, Sahin, Asli Durmusoglu, Caglar Sevim, Mehmet Safa Bingol e Menderes Kalkat. "Design of neural predictors for predicting and analysing COVID-19 cases in different regions". Neural Network World 32, n.º 5 (2022): 233–51. http://dx.doi.org/10.14311/nnw.2022.32.014.
Texto completo da fonteMorozov, A. Yu, D. L. Reviznikov e K. K. Abgaryan. "Issues of implementing neural network algorithms on memristor crossbars". Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 22, n.º 4 (4 de fevereiro de 2020): 272–78. http://dx.doi.org/10.17073/1609-3577-2019-4-272-278.
Texto completo da fonteHao, Yaobin, e Fangying Song. "Fourier Neural Operator Networks for Solving Reaction–Diffusion Equations". Fluids 9, n.º 11 (6 de novembro de 2024): 258. http://dx.doi.org/10.3390/fluids9110258.
Texto completo da fonteMoon, Jihoon, Sungwoo Park, Seungmin Rho e Eenjun Hwang. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting". International Journal of Distributed Sensor Networks 15, n.º 9 (setembro de 2019): 155014771987761. http://dx.doi.org/10.1177/1550147719877616.
Texto completo da fonteJayaprakash, T., V. Jyoshita, E. Mallesh, Malleswari Neelam, T. Manikanta e sankaran ramesh kumar. "Face Mask Detection Using Convolutional Neural Networks". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de maio de 2024): 3541–46. http://dx.doi.org/10.22214/ijraset.2024.61608.
Texto completo da fonteLitavrin, Andrey V., e Tatyana V. Moiseenkova. "About One Groupoid Associated with the Composition of Multilayer Feedforward Neural Networks". Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 26, n.º 2 (30 de junho de 2024): 111–22. http://dx.doi.org/10.15507/2079-6900.26.202402.111-122.
Texto completo da fonteStrijhak, Sergei, Daniil Ryazanov, Konstantin Koshelev e Aleksandr Ivanov. "Neural Network Prediction for Ice Shapes on Airfoils Using iceFoam Simulations". Aerospace 9, n.º 2 (12 de fevereiro de 2022): 96. http://dx.doi.org/10.3390/aerospace9020096.
Texto completo da fonteMatondo-Mvula, Nadine, e Khaled Elleithy. "Breast Cancer Detection with Quanvolutional Neural Networks". Entropy 26, n.º 8 (26 de julho de 2024): 630. http://dx.doi.org/10.3390/e26080630.
Texto completo da fonteBelorutsky, R. Yu, e S. V. Zhitnik. "SPEECH RECOGNITION BASED ON CONVOLUTION NEURAL NETWORKS". Issues of radio electronics, n.º 4 (10 de maio de 2019): 47–52. http://dx.doi.org/10.21778/2218-5453-2019-4-47-52.
Texto completo da fonteTanabe, Kazutoshi, Tadao Tamura e Hiroyuki Uesaka. "Neural Network System for the Identification of Infrared Spectra". Applied Spectroscopy 46, n.º 5 (maio de 1992): 807–10. http://dx.doi.org/10.1366/0003702924124619.
Texto completo da fonteGeva, Shlomo, e Joaquin Sitte. "An Exponential Response Neural Net". Neural Computation 3, n.º 4 (dezembro de 1991): 623–32. http://dx.doi.org/10.1162/neco.1991.3.4.623.
Texto completo da fonteTrejo-Alonso, Josué, Carlos Fuentes, Carlos Chávez, Antonio Quevedo, Alfonso Gutierrez-Lopez e Brandon González-Correa. "Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks". Water 13, n.º 5 (5 de março de 2021): 705. http://dx.doi.org/10.3390/w13050705.
Texto completo da fonteXu, Zhengzheng, e Junhua Gu. "Research on traffic flow prediction method based on adaptive multi-channel graph convolutional neural networks". Advances in Engineering Innovation 7, n.º 1 (25 de abril de 2024): 41–47. http://dx.doi.org/10.54254/2977-3903/7/2024066.
Texto completo da fonteJiao, Libin, Rongfang Bie, Hao Wu, Yu Wei, Jixin Ma, Anton Umek e Anton Kos. "Golf swing classification with multiple deep convolutional neural networks". International Journal of Distributed Sensor Networks 14, n.º 10 (outubro de 2018): 155014771880218. http://dx.doi.org/10.1177/1550147718802186.
Texto completo da fonteDíaz-Vico, David, Jesús Prada, Adil Omari e José Dorronsoro. "Deep support vector neural networks". Integrated Computer-Aided Engineering 27, n.º 4 (11 de setembro de 2020): 389–402. http://dx.doi.org/10.3233/ica-200635.
Texto completo da fonteWang, Jinfeng, e Xuegang Wang. "Two new methods for facial expression recognition using Convolutional Neural Networks". Journal of Physics: Conference Series 2031, n.º 1 (1 de setembro de 2021): 012023. http://dx.doi.org/10.1088/1742-6596/2031/1/012023.
Texto completo da fonteFathima, Sheeba. "Music Genre Classification using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 9, n.º VII (10 de julho de 2021): 66–71. http://dx.doi.org/10.22214/ijraset.2021.36087.
Texto completo da fonteZakić, Milorad, e Goran Kvaščev. "Procena mesta nastanka kvara na električnom vodu primenom veštačkih neuralnih mreža". Energija, ekonomija, ekologija XXIV, n.º 4 (dezembro de 2022): 68–74. http://dx.doi.org/10.46793/eee22-4.68z.
Texto completo da fonteWang, Lingfeng. "Forecast Model of TV Show Rating Based on Convolutional Neural Network". Complexity 2021 (24 de fevereiro de 2021): 1–10. http://dx.doi.org/10.1155/2021/6694538.
Texto completo da fonteTzougas, George, e Konstantin Kutzkov. "Enhancing Logistic Regression Using Neural Networks for Classification in Actuarial Learning". Algorithms 16, n.º 2 (9 de fevereiro de 2023): 99. http://dx.doi.org/10.3390/a16020099.
Texto completo da fonteBukhari, Syeda Sana, Waqar Ahmad, Khurram Khan Jadoon e Shahab U. Ansari. "Artificial Neural Network-Based Color Contrast Recommendation System". MATEC Web of Conferences 398 (2024): 01029. http://dx.doi.org/10.1051/matecconf/202439801029.
Texto completo da fonteSOHN, ANDREW, e JEAN-LUC GAUDIOT. "REPRESENTING AND PROCESSING PRODUCTION SYSTEMS IN CONNECTIONIST ARCHITECTURES". International Journal of Pattern Recognition and Artificial Intelligence 04, n.º 02 (junho de 1990): 199–214. http://dx.doi.org/10.1142/s0218001490000149.
Texto completo da fonteYu, Haichao, Haoxiang Li, Gang Hua, Gao Huang e Humphrey Shi. "Boosted Dynamic Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 10989–97. http://dx.doi.org/10.1609/aaai.v37i9.26302.
Texto completo da fonteCurteanu, Silvia. "Direct and inverse neural network modeling in free radical polymerization". Open Chemistry 2, n.º 1 (1 de março de 2004): 113–40. http://dx.doi.org/10.2478/bf02476187.
Texto completo da fontePecev, Predrag, e Milos Rackovic. "LTR-MDTS structure - a structure for multiple dependent time series prediction". Computer Science and Information Systems 14, n.º 2 (2017): 467–90. http://dx.doi.org/10.2298/csis150815004p.
Texto completo da fonteIto, Yoshifusa. "Approximation Capability of Layered Neural Networks with Sigmoid Units on Two Layers". Neural Computation 6, n.º 6 (novembro de 1994): 1233–43. http://dx.doi.org/10.1162/neco.1994.6.6.1233.
Texto completo da fonteBORSCHBACH, M., W. M. LIPPE e S. NIENDIEK. "A TOOL FOR ANALYZING MAGNETOENCEPHALOGRAPHY-DATA BASED ON DIFFERENT ARTIFICIAL NEURAL NETWORKS". International Journal of Software Engineering and Knowledge Engineering 13, n.º 06 (dezembro de 2003): 609–26. http://dx.doi.org/10.1142/s0218194003001457.
Texto completo da fonteDu, Lei, Haifeng Song, Yingying Xu e Songsong Dai. "An Architecture as an Alternative to Gradient Boosted Decision Trees for Multiple Machine Learning Tasks". Electronics 13, n.º 12 (12 de junho de 2024): 2291. http://dx.doi.org/10.3390/electronics13122291.
Texto completo da fonteKonarev, D. I., e A. A. Gulamov. "Synthesis of Neural Network Architecture for Recognition of Sea-Going Ship Images". Proceedings of the Southwest State University 24, n.º 1 (23 de junho de 2020): 130–43. http://dx.doi.org/10.21869/2223-1560-2020-24-1-130-143.
Texto completo da fonteBan, Jung-Chao, e Chih-Hung Chang. "On the Structure of Multilayer Cellular Neural Networks: Complexity between Two Layers". Complex Systems 24, n.º 4 (15 de dezembro de 2015): 311–54. http://dx.doi.org/10.25088/complexsystems.24.4.311.
Texto completo da fonteMcEneaney, John E. "Neural Networks for Readability Analysis". Journal of Educational Computing Research 10, n.º 1 (janeiro de 1994): 79–93. http://dx.doi.org/10.2190/2ln8-8chq-64mu-7d9c.
Texto completo da fonteKHASHMAN, ADNAN. "A NEURAL NETWORK MODEL FOR CREDIT RISK EVALUATION". International Journal of Neural Systems 19, n.º 04 (agosto de 2009): 285–94. http://dx.doi.org/10.1142/s0129065709002014.
Texto completo da fonte