Literatura científica selecionada sobre o tema "Ultra-Low-Field MRI"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Ultra-Low-Field MRI".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Ultra-Low-Field MRI"

1

Espy, Michelle, Andrei Matlashov e Petr Volegov. "SQUID-detected ultra-low field MRI". Journal of Magnetic Resonance 229 (abril de 2013): 127–41. http://dx.doi.org/10.1016/j.jmr.2013.02.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zevenhoven, Koos C. J., e Sarianna Alanko. "Ultra-low-noise amplifier for ultra-low-field MRI main field and gradients". Journal of Physics: Conference Series 507, n.º 4 (12 de maio de 2014): 042050. http://dx.doi.org/10.1088/1742-6596/507/4/042050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Shen, Sheng, Jiamin Wu, Pan Guo, Hongyi Wang, Fangge Chen, Fanqin Meng e Zheng Xu. "Electromagnet design for ultra-low-field MRI". International Journal of Applied Electromagnetics and Mechanics 63, n.º 2 (8 de junho de 2020): 267–78. http://dx.doi.org/10.3233/jae-190051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Espy, Michelle, Andrei Matlashov e Petr Volegov. "WITHDRAWN: SQUID-detected ultra-low field MRI". Journal of Magnetic Resonance 272 (novembro de 2016): 181. http://dx.doi.org/10.1016/j.jmr.2016.09.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Espy, Michelle, Andrei Matlashov e Petr Volegov. "WITHDRAWN: SQUID-detected ultra-low field MRI". Journal of Magnetic Resonance 228 (março de 2013): 1–15. http://dx.doi.org/10.1016/j.jmr.2012.11.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kawagoe, Satoshi, Hirotomo Toyota, Junichi Hatta, Seiichiro Ariyoshi e Saburo Tanaka. "Ultra-low field MRI food inspection system prototype". Physica C: Superconductivity and its Applications 530 (novembro de 2016): 104–8. http://dx.doi.org/10.1016/j.physc.2016.02.015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Dean, Kirsti I., e Markku Komu. "Breast tumor imaging with ultra low field MRI". Magnetic Resonance Imaging 12, n.º 3 (janeiro de 1994): 395–401. http://dx.doi.org/10.1016/0730-725x(94)92532-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hsu, Yi-Cheng, Koos C. J. Zevenhoven, Ying-Hua Chu, Juhani Dabek, Risto J. Ilmoniemi e Fa-Hsuan Lin. "Rotary scanning acquisition in ultra-low-field MRI". Magnetic Resonance in Medicine 75, n.º 6 (30 de junho de 2015): 2255–64. http://dx.doi.org/10.1002/mrm.25676.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Demachi, Kazuma, Kanji Hayashi, Seiji Adachi, Keiichi Tanabe e Saburo Tanaka. "T1-Weighted Image by Ultra-Low Field SQUID-MRI". IEEE Transactions on Applied Superconductivity 29, n.º 5 (agosto de 2019): 1–5. http://dx.doi.org/10.1109/tasc.2019.2902772.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Vesanen, Panu T., Jaakko O. Nieminen, Koos C. J. Zevenhoven, Yi-Cheng Hsu e Risto J. Ilmoniemi. "Current-density imaging using ultra-low-field MRI with zero-field encoding". Magnetic Resonance Imaging 32, n.º 6 (julho de 2014): 766–70. http://dx.doi.org/10.1016/j.mri.2014.01.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Ultra-Low-Field MRI"

1

Vigilante, Antonio. "Advances in Atomic Magnetometry for Ultra-Low-Field NMR and MRI". Doctoral thesis, Università di Siena, 2019. http://hdl.handle.net/11365/1087368.

Texto completo da fonte
Resumo:
In this thesis the candidate proposes some technical and fundamental advances for NMR and MRI measurements in the ultra-low field (ULF) regime executed with optical-atomic-magnetometers (OAMs). This regime corresponds to field intensities such to make the nuclei precess at frequencies as low as tens/hundreds Hz. A self-optimized compensation system reduces the magnetic disturbances so to make the magnetometer suited to detect those ULF signals in an unshielded environment. The magnetometer is exploited as a high-sensitivity non-inductive sensor for ULF-NMR signal detection. Besides application in ULF-NMR spectroscopy, the simultaneous analysis of nuclear and atomic precession is used in a novel hybrid setup, which enables the detection of diluted magnetic contaminants. As predominant result an inhomogeneous-magnetic-dressing based (IDEA) technique has been devised enabling the first in-situ ULF-MRI detection by OAMs with sub-millimetric resolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lai, Jui-Tse, e 賴瑞澤. "The study on T1 contrast enhancement of magnetic nanoparticle agent in Ultra low –field MRI". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/05241243402523057777.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Ultra-Low-Field MRI"

1

Robert, Kraus, Michelle Espy, Per Magnelind e Petr Volegov. Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime. Oxford University Press, Incorporated, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime. Oxford University Press, Incorporated, 2014.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Ultra-Low-Field MRI"

1

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin e Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG". In Magnetoencephalography, 1–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-62657-4_46-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin e Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG". In Magnetoencephalography, 941–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-33045-2_46.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Parkkonen, Lauri, Risto J. Ilmoniemi, Fa-Hsuan Lin e Michelle Espy. "Ultra-Low-Field MRI and Its Combination with MEG". In Magnetoencephalography, 1261–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00087-5_46.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gerlach, Ruediger, Richard du Mesnil de Rochemont, Thomas Gasser, Gerhard Marquardt, Lioba Imoehl e Volker Seifert. "Implementation of the Ultra Low Field Intraoperative MRI PoleStar N20 During Resection Control of Pituitary Adenomas". In Intraoperative Imaging, 73–79. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99651-5_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Dabek, Juhani, Fredrik Sannholm, Jaakko O. Nieminen, Panu T. Vesanen e Risto J. Ilmoniemi. "Safety in Simultaneous Ultra-Low-Field MRI and MEG: Forces Exerted on Magnetizable Objects by Magnetic Fields". In IFMBE Proceedings, 74–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12197-5_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind e Petr L. Volegov. "Applications in ULF MRI". In Ultra-Low Field Nuclear Magnetic Resonance, 202–28. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind e Petr L. Volegov. "Nuts and Bolts of ULF MRI". In Ultra-Low Field Nuclear Magnetic Resonance, 47–82. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kraus, Robert H., Michelle A. Espy, Per E. Magnelind e Petr L. Volegov. "Fundamental Principles of NMR and MRI at ULF". In Ultra-Low Field Nuclear Magnetic Resonance, 1–46. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199796434.003.0001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Robson, Matthew. "7 T cardiac imaging". In The EACVI Textbook of Cardiovascular Magnetic Resonance, editado por Massimo Lombardi, Sven Plein, Steffen Petersen, Chiara Bucciarelli-Ducci, Emanuela R. Valsangiacomo Buechel, Cristina Basso e Victor Ferrari, 620–23. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198779735.003.0062.

Texto completo da fonte
Resumo:
By increasing the field strength of the magnet used for magnetic resonance imaging (MRI), the available signal from the patient is enhanced, and this basic physics principle has driven the clinical MRI market to ever higher field strengths. Seven Tesla (7 T) scanners yield 4-5 times more signal than 1.5 T scanners; this signal-to-noise ratio increase facilitates high-resolution imaging, faster imaging when using accelerated techniques such as SENSE and GRAPPA, and greater sensitivity to low-concentration metabolites. Magnetic resonance spectroscopy acquisitions also benefit, owing to the greater chemical shift dispersion at ultra-high field. A significant difficulty is due to the radiofrequency excitation required that oscillates at 300 MHz, which results in destructive interference of the excitation fields and heating of the patient, and hence requires expensive additional hardware. While 7 T presents a great opportunity to cardiovascular MRI research, it is not yet a routine clinical tool, owing to the compound challenges of high cost, limited availability, and the difficulties of radiofrequency excitation at 300 MHz.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Ultra-Low-Field MRI"

1

Wroblewski, Przemyslaw, Jan Szyszko e Waldemar T. Smolik. "Mandhala magnet for ultra low-field MRI". In 2011 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2011. http://dx.doi.org/10.1109/ist.2011.5962203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kobayashi, Tetsuo. "Toward ultra-low field multimodal MRI with atomic magnetometer". In 2012 ICME International Conference on Complex Medical Engineering (CME). IEEE, 2012. http://dx.doi.org/10.1109/iccme.2012.6275594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Korber, Rainer, Oliver Kieler, Peter Hommen, Nora Hofner e Jan-Hendrik Storm. "Ultra-sensitive SQUID systems for applications in biomagnetism and ultra-low field MRI". In 2019 IEEE International Superconductive Electronics Conference (ISEC). IEEE, 2019. http://dx.doi.org/10.1109/isec46533.2019.8990912.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Oyama, D., Y. Adachi, M. Higuchi, N. Tsuyuguchi e G. Uehara. "Development of compact ultra-low-field MRI system using an induction coil". In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007965.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tanaka, S., S. Tsunaki, M. Yamamoto, Y. Hatsukade e J. Hatta. "Magnetic contaminant imaging using High-TC SQUID ultra-low field MRI technologies". In 2013 International Workshop on Magnetic Particle Imaging (IWMPI). IEEE, 2013. http://dx.doi.org/10.1109/iwmpi.2013.6528386.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dabek, J., K. C. J. Zevenhoven, J. O. Nieminen, P. T. Vesanen, R. Sepponen e R. J. Ilmoniemi. "Gradient-excitation encoding combined with frequency and phase encodings for three-dimensional ultra-low-field MRI". In 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Oida, Takenori, e Tetsuo Kobayashi. "Free induction decay MR signal measurements toward ultra-low field MRI with an optically pumped atomic magnetometer". In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Martínez, Juan Alberto Martínez, Jaime Fabian Vázquez de la Rosa, Rodrigo Alfonso Martín Salas, Sergio Enrique Solís Nájera e Alfredo Odón Rodriguez Gonzalez. "Design and building of a phantom for the recording of internal temperature, in an ultra-low magnetic field MRI system". In PROCEEDINGS OF THE XVI MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Dou, Y., Y. Li, J. Xu, Q. Chen, L. Wang, X. Zhang, N. Li, C. Luo e F. Du. "A Novel 1H/ 3He Dual-Tuned Transmit Coil at Ultra-low Field MRI Designed by Using Electromagnetic Field and Radio Frequency Circuit Co-Simulation Method." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508152.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia