Artigos de revistas sobre o tema "Ultra-Low-Field NMR"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ultra-Low-Field NMR".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Rachineni, Kavitha, Veera Mohana Rao Kakita e Ramakrishna V. Hosur. "Ultra-high resolution in low field tabletop NMR spectrometers". RSC Adv. 7, n.º 77 (2017): 49102–4. http://dx.doi.org/10.1039/c7ra09594e.
Texto completo da fonteDemachi, K., S. Kawagoe, S. Ariyoshi e S. Tanaka. "Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil". Journal of Physics: Conference Series 871 (julho de 2017): 012076. http://dx.doi.org/10.1088/1742-6596/871/1/012076.
Texto completo da fonteSims, James R., Josef B. Schillig, Charles A. Swenson, David L. Gardner, Andrei N. Matlashov e Curtt N. Ammerman. "Low-Noise Pulsed Pre-Polarization Magnet Systems for Ultra-Low Field NMR". IEEE Transactions on Applied Superconductivity 20, n.º 3 (junho de 2010): 752–55. http://dx.doi.org/10.1109/tasc.2010.2040613.
Texto completo da fonteGeorge Kurian, K. K., P. K. Madhu e G. Rajalakshmi. "Solid-state NMR signals at zero-to-ultra-low-field". Journal of Magnetic Resonance Open 10-11 (junho de 2022): 100049. http://dx.doi.org/10.1016/j.jmro.2022.100049.
Texto completo da fonteJin, Y. R., N. Wang, S. Li, Y. Tian, Y. F. Ren, Y. L. Wu, H. Deng et al. "The Effect of Low Frequency External Field Disturbance on the SQUID Based Ultra-Low Field NMR Measurements". IEEE Transactions on Applied Superconductivity 21, n.º 3 (junho de 2011): 518–21. http://dx.doi.org/10.1109/tasc.2010.2096551.
Texto completo da fonteShim, Jeong Hyun, Seong-Joo Lee, Kwon-Kyu Yu, Seong-Min Hwang e Kiwoong Kim. "Strong pulsed excitations using circularly polarized fields for ultra-low field NMR". Journal of Magnetic Resonance 239 (fevereiro de 2014): 87–90. http://dx.doi.org/10.1016/j.jmr.2013.12.007.
Texto completo da fonteGanssle, Paul J., Hyun D. Shin, Scott J. Seltzer, Vikram S. Bajaj, Micah P. Ledbetter, Dmitry Budker, Svenja Knappe, John Kitching e Alexander Pines. "Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer". Angewandte Chemie 126, n.º 37 (31 de julho de 2014): 9924–28. http://dx.doi.org/10.1002/ange.201403416.
Texto completo da fonteGanssle, Paul J., Hyun D. Shin, Scott J. Seltzer, Vikram S. Bajaj, Micah P. Ledbetter, Dmitry Budker, Svenja Knappe, John Kitching e Alexander Pines. "Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer". Angewandte Chemie International Edition 53, n.º 37 (31 de julho de 2014): 9766–70. http://dx.doi.org/10.1002/anie.201403416.
Texto completo da fonteKiryutin, Alexey S., Ivan V. Zhukov, Fabien Ferrage, Geoffrey Bodenhausen, Alexandra V. Yurkovskaya e Konstantin L. Ivanov. "Sequential assignment of NMR spectra of peptides at natural isotopic abundance with zero- and ultra-low-field total correlation spectroscopy (ZULF-TOCSY)". Physical Chemistry Chemical Physics 23, n.º 16 (2021): 9715–20. http://dx.doi.org/10.1039/d0cp06337a.
Texto completo da fonteTsunaki, S., M. Yamamoto, J. Hatta, Y. Hatsukade e S. Tanaka. "Development of contaminant detection system based on ultra-low field SQUID-NMR/MRI". Journal of Physics: Conference Series 507, n.º 4 (12 de maio de 2014): 042044. http://dx.doi.org/10.1088/1742-6596/507/4/042044.
Texto completo da fonteVolegov, P. L., A. N. Matlachov e R. H. Kraus. "Ultra-low field NMR measurements of liquids and gases with short relaxation times". Journal of Magnetic Resonance 183, n.º 1 (novembro de 2006): 134–41. http://dx.doi.org/10.1016/j.jmr.2006.07.021.
Texto completo da fonteYanagisawa, Y., M. Hamada, K. Hashi e H. Maeda. "Review of recent developments in ultra-high field (UHF) NMR magnets in the Asia region". Superconductor Science and Technology 35, n.º 4 (7 de março de 2022): 044006. http://dx.doi.org/10.1088/1361-6668/ac5644.
Texto completo da fonteYANAGIBASHI, Hideyuki, Koya ABE, Junji HIRAMA, Daisuke OYAMA e Junichi HATTA. "Development of Ultra Low Magnetic Field NMR Equipment and Non-destructive Food State Analysis". Shokubutsu Kankyo Kogaku 33, n.º 1 (2021): 12–19. http://dx.doi.org/10.2525/shita.33.12.
Texto completo da fonteHatsukade, Y., T. Abe, S. Tsunaki, M. Yamamoto, H. Murata e S. Tanaka. "Application of Ultra-Low Field HTS-SQUID NMR/MRI to Contaminant Detection in Food". IEEE Transactions on Applied Superconductivity 23, n.º 3 (junho de 2013): 1602204. http://dx.doi.org/10.1109/tasc.2012.2237473.
Texto completo da fonteNieminen, Jaakko O., Jens Voigt, Stefan Hartwig, Hans Jürgen Scheer, Martin Burghoff, Lutz Trahms e Risto J. Ilmoniemi. "Improved Contrast in Ultra-Low-Field MRI with Time-Dependent Bipolar Prepolarizing Fields: Theory and NMR Demonstrations". Metrology and Measurement Systems 20, n.º 3 (1 de setembro de 2013): 327–36. http://dx.doi.org/10.2478/mms-2013-0028.
Texto completo da fonteHill-Casey, Sakho, Mohammed, Rossetto, Ahwal, Duckett, John, Richardson, Virgo e Halse. "In Situ SABRE Hyperpolarization with Earth’s Field NMR Detection". Molecules 24, n.º 22 (14 de novembro de 2019): 4126. http://dx.doi.org/10.3390/molecules24224126.
Texto completo da fonteMagnelind, P. E., A. N. Matlashov, P. L. Volegov e M. A. Espy. "Ultra-Low Field NMR of ${\rm UF}_{6}$ for $^{235}{\rm U}$ Detection and Characterization". IEEE Transactions on Applied Superconductivity 19, n.º 3 (junho de 2009): 816–18. http://dx.doi.org/10.1109/tasc.2009.2019562.
Texto completo da fonteSavukov, Igor, Young Jin Kim e Gregory Schultz. "Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer". Journal of Magnetic Resonance 317 (agosto de 2020): 106780. http://dx.doi.org/10.1016/j.jmr.2020.106780.
Texto completo da fonteTan, Yiqiu, Danfeng Zhou, Mengxiao Song e Jie Li. "Effective Suppression of Residual Magnetic Interference in a Conductive Shielded Room for Ultra-Low Field Nuclear Magnetic Resonance". Applied Sciences 10, n.º 11 (28 de maio de 2020): 3745. http://dx.doi.org/10.3390/app10113745.
Texto completo da fonteOogane, Mikihiko, Kosuke Fujiwara, Akitake Kanno, Takafumi Nakano, Hiroshi Wagatsuma, Tadashi Arimoto, Shigemi Mizukami et al. "Sub-pT magnetic field detection by tunnel magneto-resistive sensors". Applied Physics Express 14, n.º 12 (22 de novembro de 2021): 123002. http://dx.doi.org/10.35848/1882-0786/ac3809.
Texto completo da fonteBevilacqua, Giuseppe, Valerio Biancalana, Marco Consumi, Yordanka Dancheva, Claudio Rossi, Leonardo Stiaccini e Antonio Vigilante. "Ferromagnetic contamination of ultra-low-field-NMR sample containers. Quantification of the problem and possible solutions". Journal of Magnetism and Magnetic Materials 514 (novembro de 2020): 167220. http://dx.doi.org/10.1016/j.jmmm.2020.167220.
Texto completo da fonteKörber, Rainer, Jaakko O. Nieminen, Nora Höfner, Vojko Jazbinšek, Hans-Jürgen Scheer, Kiwoong Kim e Martin Burghoff. "An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR". Journal of Magnetic Resonance 237 (dezembro de 2013): 182–90. http://dx.doi.org/10.1016/j.jmr.2013.10.011.
Texto completo da fonteAppelt, Stephan, F. Wolfgang Häsing, Holger Kühn, Ulrich Sieling e Bernhard Blümich. "Analysis of molecular structures by homo- and hetero-nuclear J-coupled NMR in ultra-low field". Chemical Physics Letters 440, n.º 4-6 (junho de 2007): 308–12. http://dx.doi.org/10.1016/j.cplett.2007.03.096.
Texto completo da fonteAhmad, Sheikh Faisal, Young Cheol Kim, Ick Chang Choi e Hyun Deok Kim. "Recent Progress in Birdcage RF Coil Technology for MRI System". Diagnostics 10, n.º 12 (27 de novembro de 2020): 1017. http://dx.doi.org/10.3390/diagnostics10121017.
Texto completo da fonteChighine, Kévin, Estelle Léonce, Céline Boutin, Hervé Desvaux e Patrick Berthault. "<sup>129</sup>Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer". Magnetic Resonance 2, n.º 1 (11 de junho de 2021): 409–20. http://dx.doi.org/10.5194/mr-2-409-2021.
Texto completo da fonteGanssle, Paul J., Hyun D. Shin, Scott J. Seltzer, Vikram S. Bajaj, Micah P. Ledbetter, Dmitry Budker, Svenja Knappe, John Kitching e Alexander Pines. "Titelbild: Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer (Angew. Chem. 37/2014)". Angewandte Chemie 126, n.º 37 (30 de julho de 2014): 9831. http://dx.doi.org/10.1002/ange.201406156.
Texto completo da fonteLinghu, Kehuan, Zhengshan Guo, Yulong Li, Tiequan Xu, Wenhao Luo, Zigeng Huang, Yirong Jin, Dongning Zheng, Furen Wang e Zizhao Gan. "The step-edge type HTS rf SQUID coupling with a LC circuit in ultra-low field NMR system". Physica C: Superconductivity and its Applications 564 (setembro de 2019): 1–5. http://dx.doi.org/10.1016/j.physc.2019.05.004.
Texto completo da fonteIsingizwe Nturambirwe, Jean Frederic, Willem Jacobus Perold e Umezuruike Linus Opara. "A Squid-Detected NMR Relaxation Study of Banana Fruit Ripening". Applied Engineering in Agriculture 37, n.º 2 (2021): 219–31. http://dx.doi.org/10.13031/aea.13991.
Texto completo da fonteLi, Yongqiang, Peixiang Ma, Quan Tao, Hans-Joachim Krause, Siwei Yang, Guqiao Ding, Hui Dong e Xiaoming Xie. "Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry". Sensors and Actuators B: Chemical 337 (junho de 2021): 129786. http://dx.doi.org/10.1016/j.snb.2021.129786.
Texto completo da fonteGanssle, Paul J., Hyun D. Shin, Scott J. Seltzer, Vikram S. Bajaj, Micah P. Ledbetter, Dmitry Budker, Svenja Knappe, John Kitching e Alexander Pines. "Cover Picture: Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer (Angew. Chem. Int. Ed. 37/2014)". Angewandte Chemie International Edition 53, n.º 37 (30 de julho de 2014): 9677. http://dx.doi.org/10.1002/anie.201406156.
Texto completo da fonteZhang, Dan, Shohei Fukumoto, Shingo Tsunaki, Yoshimi Hatsukade e Saburo Tanaka. "Development of signal to noise ratio of HTS-rf-SQUID for ultra-low field NMR / MRI by 77K LC resonant circuit". Physics Procedia 27 (2012): 348–51. http://dx.doi.org/10.1016/j.phpro.2012.03.482.
Texto completo da fonteZhao, Jing, Hongjie Luo e Xiao Huang. "Migration, Distribution, and Crystallization of NaCl and Na2SO4 Solutions in Three Different Media". Crystals 10, n.º 6 (30 de maio de 2020): 444. http://dx.doi.org/10.3390/cryst10060444.
Texto completo da fonteOk, S. "Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils". Grasas y Aceites 68, n.º 1 (1 de março de 2017): 173. http://dx.doi.org/10.3989/gya.0678161.
Texto completo da fonteLi, Dafu, Bo Tian, Kaimin Niu, Lihui Li, Lei Quan e Xuwei Zhu. "Effects of Ambient Humidity on Water Migration and Hydrate Change in Early-Age Hardened Cement Paste". Materials 15, n.º 24 (9 de dezembro de 2022): 8803. http://dx.doi.org/10.3390/ma15248803.
Texto completo da fonteLv, Ying, Yuanming Chu, Pengcheng Zhou, Jun Mei e Jing Xie. "Effects of Different Freezing Methods on Water Distribution, Microstructure and Protein Properties of Cuttlefish during the Frozen Storage". Applied Sciences 11, n.º 15 (26 de julho de 2021): 6866. http://dx.doi.org/10.3390/app11156866.
Texto completo da fonteKirkland, Catherine M., Julia R. Krug, Frank J. Vergeldt, Lenno van den Berg, Aldrik H. Velders, Joseph D. Seymour, Sarah L. Codd, Henk Van As e Merle K. de Kreuk. "Characterizing the structure of aerobic granular sludge using ultra-high field magnetic resonance". Water Science and Technology 82, n.º 4 (27 de julho de 2020): 627–39. http://dx.doi.org/10.2166/wst.2020.341.
Texto completo da fonteS. S. dos Santos, Paulo, José M. M. M. de Almeida, Isabel Pastoriza-Santos e Luís C. C. Coelho. "Advances in Plasmonic Sensing at the NIR—A Review". Sensors 21, n.º 6 (17 de março de 2021): 2111. http://dx.doi.org/10.3390/s21062111.
Texto completo da fonteLiu, Wen, Runze Chen e Sailing He. "Ultra-stable near-infrared Tm3+-doped upconversion nanoparticles for in vivo wide-field two-photon angiography with a low excitation intensity". Journal of Innovative Optical Health Sciences 12, n.º 03 (maio de 2019): 1950013. http://dx.doi.org/10.1142/s1793545819500135.
Texto completo da fonteWang, Jian-Jun. "Research on heating technology of regenerative oxidation used low concentration CBM in small coal mine". E3S Web of Conferences 267 (2021): 02070. http://dx.doi.org/10.1051/e3sconf/202126702070.
Texto completo da fonteJia, Xiao-liang. "Experimental study on performance of high purity nitrogen supply system in liquefaction unit of low concentration coalbed methane". E3S Web of Conferences 267 (2021): 02076. http://dx.doi.org/10.1051/e3sconf/202126702076.
Texto completo da fonteSinapidou, Evaggelia, Chrysanthi Pankou, Fotakis Gekas, Iosif Sistanis, Constantinos Tzantarmas, Maria Tokamani, Ioannis Mylonas et al. "Plant Yield Efficiency by Homeostasis as Selection Tool at Ultra-Low Density. A Comparative Study with Common Stability Measures in Maize". Agronomy 10, n.º 8 (16 de agosto de 2020): 1203. http://dx.doi.org/10.3390/agronomy10081203.
Texto completo da fonteYu, Hongyi, Mingxing Chen e Wang Yao. "Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors". National Science Review 7, n.º 1 (13 de agosto de 2019): 12–20. http://dx.doi.org/10.1093/nsr/nwz117.
Texto completo da fonteCassará, A. M., R. Körber, I. Hilschenz, N. Höfner, J. Voigt, T. Fedele, M. Burghoff e B. Maraviglia. "Toward neuronal current spectroscopy at Ultra-Low field NMR". Biomedical Engineering / Biomedizinische Technik 57, SI-1 Track-M (4 de janeiro de 2012). http://dx.doi.org/10.1515/bmt-2012-4077.
Texto completo da fonteTanaka, Saburo, Yuya Hirose, Junichi Hatta, Seiichiro Ariyoshi, Seiji Adachi e Keiichi Tanabe. "Ultra-Low Field High Tc SQUID NMR/MRI System with 77K Cooled Copper Flux Transformer". IEEE Transactions on Applied Superconductivity, 2015, 1. http://dx.doi.org/10.1109/tasc.2015.2512798.
Texto completo da fonteBuckenmaier, K., M. Rudolph, C. Back, T. Misztal, U. Bommerich, P. Fehling, D. Koelle et al. "SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange". Scientific Reports 7, n.º 1 (18 de outubro de 2017). http://dx.doi.org/10.1038/s41598-017-13757-7.
Texto completo da fonteLi, Yongqiang, Yi Xiao, Quan Tao, Mengmeng Yu, Li Zheng, Siwei Yang, Guqiao Ding, Hui Dong e Xiaoming Xie. "Selective coordination and localized polarization in graphene quantum dots: Detection of fluoride anions using ultra-low-field NMR relaxometry". Chinese Chemical Letters, maio de 2021. http://dx.doi.org/10.1016/j.cclet.2021.05.014.
Texto completo da fonteWang, Anlun, Xiaoqing Zhao, Jianguang Wei, Lisha Zhao, Guangliang An, Xiaofeng Zhou, Jiangtao Li, Xuedong Shi, Ying Yang e Gen Li. "Characterization of Residual Oil Distribution in Sandstone by NMR: A Microscopic View on Oil Recovery by Miscible CO2 Flooding". Lithosphere 2022, Special 12 (24 de agosto de 2022). http://dx.doi.org/10.2113/2022/4565111.
Texto completo da fonteZhang, Cheng, Jinshan Yang, Zhongbo Yan, Xiang Yuan, Yanwen Liu, Minhao Zhao, Alexey Suslov et al. "Magnetic-field-induced nonlinear transport in HfTe5". National Science Review, 26 de novembro de 2021. http://dx.doi.org/10.1093/nsr/nwab208.
Texto completo da fonteWei, Danyang, Jiajie Guo, Yuqi Qiu, Shaoyu Liu, Jiangyan Mao, Yutian Liu, Zhenbing Chen, Hao Wu e Zhouping Yin. "Monitoring delicate operations of surgical robots by ultra-sensitive ionic electronic skin". National Science Review, 21 de outubro de 2022. http://dx.doi.org/10.1093/nsr/nwac227.
Texto completo da fonteNiwa, Kazuki, Kaori Hattori e Daiji Fukuda. "Few-Photon Spectral Confocal Microscopy for Cell Imaging Using Superconducting Transition Edge Sensor". Frontiers in Bioengineering and Biotechnology 9 (15 de dezembro de 2021). http://dx.doi.org/10.3389/fbioe.2021.789709.
Texto completo da fonte