Literatura científica selecionada sobre o tema "Uncertainly quantification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Uncertainly quantification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Uncertainly quantification"
Jalaian, Brian, Michael Lee, and Stephen Russell. "Uncertain Context: Uncertainty Quantification in Machine Learning." AI Magazine 40, no. 4 (2019): 40–49. http://dx.doi.org/10.1609/aimag.v40i4.4812.
Texto completo da fonteVerdonck, H., O. Hach, J. D. Polman, et al. "-An open-source framework for the uncertainty quantification of aeroelastic wind turbine simulation tools." Journal of Physics: Conference Series 2265, no. 4 (2022): 042039. http://dx.doi.org/10.1088/1742-6596/2265/4/042039.
Texto completo da fonteCacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Texto completo da fonteOh, Deog Yeon, Young Seok Bang, Kwang Won Seul, and Sweng Woong Woo. "ICONE23-1466 UNCERTAINTY QUANTIFICATION OF PHYSICAL MODELS USING CIRCE METHOD." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_213.
Texto completo da fonteHu, Juxi, Lei Wang, and Xiaojun Wang. "Non-Probabilistic Uncertainty Quantification of Fiber-Reinforced Composite Laminate Based on Micro- and Macro-Mechanical Analysis." Applied Sciences 12, no. 22 (2022): 11739. http://dx.doi.org/10.3390/app122211739.
Texto completo da fonteSun, X., T. Kirchdoerfer, and M. Ortiz. "Rigorous uncertainty quantification and design with uncertain material models." International Journal of Impact Engineering 136 (February 2020): 103418. http://dx.doi.org/10.1016/j.ijimpeng.2019.103418.
Texto completo da fonteCheng, Xi, Clément Henry, Francesco P. Andriulli, Christian Person, and Joe Wiart. "A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data." International Journal of Environmental Research and Public Health 17, no. 7 (2020): 2586. http://dx.doi.org/10.3390/ijerph17072586.
Texto completo da fonteErnst, Oliver, Fabio Nobile, Claudia Schillings, and Tim Sullivan. "Uncertainty Quantification." Oberwolfach Reports 16, no. 1 (2020): 695–772. http://dx.doi.org/10.4171/owr/2019/12.
Texto completo da fonteSalehghaffari, S., and M. Rais-Rohani. "Material model uncertainty quantification using evidence theory." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, no. 10 (2013): 2165–81. http://dx.doi.org/10.1177/0954406212473390.
Texto completo da fonteTuczyński, Tomasz, and Jerzy Stopa. "Uncertainty Quantification in Reservoir Simulation Using Modern Data Assimilation Algorithm." Energies 16, no. 3 (2023): 1153. http://dx.doi.org/10.3390/en16031153.
Texto completo da fonteTeses / dissertações sobre o assunto "Uncertainly quantification"
Nguyen, Trieu Nhat Thanh. "Modélisation et simulation d'éléments finis du système pelvien humain vers un outil d'aide à la décision fiable : incertitude des données et des lois de comportement." Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0015.
Texto completo da fonteElfverson, Daniel. "Multiscale Methods and Uncertainty Quantification." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262354.
Texto completo da fonteParkinson, Matthew. "Uncertainty quantification in Radiative Transport." Thesis, University of Bath, 2019. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767610.
Texto completo da fonteCarson, J. "Uncertainty quantification in palaeoclimate reconstruction." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29076/.
Texto completo da fonteBoopathy, Komahan. "Uncertainty Quantification and Optimization Under Uncertainty Using Surrogate Models." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1398302731.
Texto completo da fonteKalmikov, Alexander G. "Uncertainty Quantification in ocean state estimation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79291.
Texto completo da fonteMalenova, Gabriela. "Uncertainty quantification for high frequency waves." Licentiate thesis, KTH, Numerisk analys, NA, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186287.
Texto completo da fonteRoy, Pamphile. "Uncertainty quantification in high dimensional problems." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0038.
Texto completo da fonteAlvarado, Martin Guillermo. "Quantification of uncertainty during history matching." Texas A&M University, 2003. http://hdl.handle.net/1969/463.
Texto completo da fonteJimenez, Edwin. "Uncertainty quantification of nonlinear stochastic phenomena." Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-11092009-161351/.
Texto completo da fonteLivros sobre o assunto "Uncertainly quantification"
Soize, Christian. Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0.
Texto completo da fonteSullivan, T. J. Introduction to Uncertainty Quantification. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23395-6.
Texto completo da fonteGhanem, Roger, David Higdon, and Houman Owhadi, eds. Handbook of Uncertainty Quantification. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-11259-6.
Texto completo da fonteSouza de Cursi, Eduardo. Uncertainty Quantification using R. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17785-9.
Texto completo da fonteSouza de Cursi, Eduardo. Uncertainty Quantification with R. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-48208-3.
Texto completo da fonteLe Maître, O. P., and Omar M. Knio. Spectral Methods for Uncertainty Quantification. Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3520-2.
Texto completo da fonteDienstfrey, Andrew M., and Ronald F. Boisvert, eds. Uncertainty Quantification in Scientific Computing. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32677-6.
Texto completo da fonteMcClarren, Ryan G. Uncertainty Quantification and Predictive Computational Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99525-0.
Texto completo da fonteBijl, Hester, Didier Lucor, Siddhartha Mishra, and Christoph Schwab, eds. Uncertainty Quantification in Computational Fluid Dynamics. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00885-1.
Texto completo da fonteBardsley, Johnathan M. Computational Uncertainty Quantification for Inverse Problems. Society for Industrial and Applied Mathematics, 2018. http://dx.doi.org/10.1137/1.9781611975383.
Texto completo da fonteCapítulos de livros sobre o assunto "Uncertainly quantification"
Soize, Christian. "Fundamental Notions in Stochastic Modeling of Uncertainties and Their Propagation in Computational Models." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_1.
Texto completo da fonteSoize, Christian. "Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_10.
Texto completo da fonteSoize, Christian. "Elements of Probability Theory." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_2.
Texto completo da fonteSoize, Christian. "Markov Process and Stochastic Differential Equation." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_3.
Texto completo da fonteSoize, Christian. "MCMC Methods for Generating Realizations and for Estimating the Mathematical Expectation of Nonlinear Mappings of Random Vectors." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_4.
Texto completo da fonteSoize, Christian. "Fundamental Probabilistic Tools for Stochastic Modeling of Uncertainties." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_5.
Texto completo da fonteSoize, Christian. "Brief Overview of Stochastic Solvers for the Propagation of Uncertainties." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_6.
Texto completo da fonteSoize, Christian. "Fundamental Tools for Statistical Inverse Problems." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_7.
Texto completo da fonteSoize, Christian. "Uncertainty Quantification in Computational Structural Dynamics and Vibroacoustics." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_8.
Texto completo da fonteSoize, Christian. "Robust Analysis with Respect to the Uncertainties for Analysis, Updating, Optimization, and Design." In Uncertainty Quantification. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54339-0_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Uncertainly quantification"
Misaka, Takashi, Shigeru Obayashi, and Shinkyu Jeong. "Uncertainly Quantification of Lidar-Derived Wake Vortex Parameters with/without Data Assimilation (Invited)." In 8th AIAA Atmospheric and Space Environments Conference. American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3271.
Texto completo da fonteZhang, Qian, Shenren Xu, Xianjun Yu, Jiaxin Liu, Dingxi Wang, and Xiuquan Huang. "Quantification of Compressor Aerodynamic Performance Deviation due to Manufacturing Uncertainty Using the Adjoint Method." In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-59.
Texto completo da fonteLee, Nian-Ze, Yen-Shi Wang, and Jie-Hong R. Jiang. "Solving Stochastic Boolean Satisfiability under Random-Exist Quantification." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/96.
Texto completo da fonteKotteda, V. M. Krushnarao, Anitha Kommu, Vinod Kumar, and William Spotz. "Uncertainty Quantification of a Fluidized Bed Reactor." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4844.
Texto completo da fonteJayaraman, Buvana, Manas Khurana, Andrew Wissink, and Rohit Jain. "Uncertainty Quantification Approach for Rotorcraft Simulations." In Vertical Flight Society 78th Annual Forum & Technology Display. The Vertical Flight Society, 2022. http://dx.doi.org/10.4050/f-0078-2022-17462.
Texto completo da fonteBudzien, Joanne, James Byerly, Rob Aulwes, Rao Garimella, Angela Herring, and Jon Woodring. "Linking Material Models Between Codes: Establishing Thermodynamic Consistency." In ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86808.
Texto completo da fonteEça, L., K. Dowding, and P. J. Roache. "On the Application of the Area Metric to Validation Exercises of Stochastic Simulations." In ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86809.
Texto completo da fonteDavis, Brad, Gregory Langone, and Nicholas Reisweber. "Sensitivity Analysis and Bayesian Calibration of a Holmquist-Johnson-Cook Material Model for Cellular Concrete Subjected to Impact Loading." In ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86800.
Texto completo da fonte"VVUQ2022 Front Matter." In ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-fm1.
Texto completo da fonteKirsch, Jared, Nima Fathi, and Joshua Hubbard. "Validation Analysis of Medium-Scale Methanol Pool Fire." In ASME 2022 Verification, Validation, and Uncertainty Quantification Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/vvs2022-86806.
Texto completo da fonteRelatórios de organizações sobre o assunto "Uncertainly quantification"
Caldeira, Joao. Deeply Uncertain: Comparing Methods of Uncertainty Quantification in Deep Learning Algorithms. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1623354.
Texto completo da fonteUrban, Nathan Mark. Climate Uncertainty Quantification at LANL. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1250690.
Texto completo da fonteThiagarajan, J. Uncertainty Quantification in Scientific ML. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1670557.
Texto completo da fonteStracuzzi, David, Maximillian Chen, Michael Darling, Matthew Peterson, and Charlie Vollmer. Uncertainty Quantification for Machine Learning. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1733262.
Texto completo da fonteKarpius, Peter. Nuclide Identification, Quantification, and Uncertainty. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1782632.
Texto completo da fonteCroft, Stephen, and Andrew Nicholson. OR14-V-Uncertainty-PD2La Uncertainty Quantification Workshop Report. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1784220.
Texto completo da fonteSeifried, Jeffrey E. Adjoint-Based Uncertainty Quantification with MCNP. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1110395.
Texto completo da fonteSrinivasan, Gowri. Need for Uncertainty Quantification in Predictions. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1191117.
Texto completo da fonteDe Bord, Sarah. Tutorial examples for uncertainty quantification methods. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1213490.
Texto completo da fonteWilliams, Mark L. Whitepaper on Uncertainty Quantification for MPACT. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1255677.
Texto completo da fonte