Artigos de revistas sobre o tema "Variable gain amplifiers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Variable gain amplifiers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Bai, Chunfeng, Jianhui Wu e Xiaoying Deng. "A Review of CMOS Variable Gain Amplifiers and Programmable Gain Amplifiers". IETE Technical Review 36, n.º 5 (22 de agosto de 2018): 484–500. http://dx.doi.org/10.1080/02564602.2018.1507766.
Texto completo da fonteLiu, W., W. Liu e S. K. Wei. "CMOS exponential-control variable gain amplifiers". IEE Proceedings - Circuits, Devices and Systems 151, n.º 2 (2004): 83. http://dx.doi.org/10.1049/ip-cds:20040111.
Texto completo da fonteBorel, Andžej. "DEVELOPMENT AND INVESTIGATION OF INPUT AMPLIFIER FOR THE OSCILOSCOPE". Mokslas - Lietuvos ateitis 12 (20 de janeiro de 2020): 1–5. http://dx.doi.org/10.3846/mla.2020.11420.
Texto completo da fonteDUONG, Q. H., C. W. KIM e S. G. LEE. "All CMOS Low-Power Wide-Gain Range Variable Gain Amplifiers". IEICE Transactions on Electronics E91-C, n.º 5 (1 de maio de 2008): 788–97. http://dx.doi.org/10.1093/ietele/e91-c.5.788.
Texto completo da fonteHuang, Yan-Yu, Wangmyong Woo, Hamhee Jeon, Chang-Ho Lee e J. Stevenson Kenney. "Compact Wideband Linear CMOS Variable Gain Amplifier for Analog-Predistortion Power Amplifiers". IEEE Transactions on Microwave Theory and Techniques 60, n.º 1 (janeiro de 2012): 68–76. http://dx.doi.org/10.1109/tmtt.2011.2175234.
Texto completo da fonteCiubotaru, A. A. "A precision control circuit for variable-gain amplifiers". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43, n.º 9 (1996): 779–82. http://dx.doi.org/10.1109/81.536747.
Texto completo da fonteJuang, C., S. F. Shiue, S. Y. Tsai e J. N. Yang. "Transimpedance amplifiers using three cascade variable inverter gain stages". Analog Integrated Circuits and Signal Processing 49, n.º 3 (11 de setembro de 2006): 299–302. http://dx.doi.org/10.1007/s10470-006-9706-0.
Texto completo da fonteBelousov, E. O., e A. G. Timoshenko. "Method for extending the bandwidth of variable gain amplifiers". Russian Microelectronics 43, n.º 7 (14 de novembro de 2014): 459–61. http://dx.doi.org/10.1134/s1063739714070026.
Texto completo da fonteSchindeler, Ryan, Daniel Cleveland e Keyvan Hashtrudi-Zaad. "Experimental evaluation of computer-controlled variable gain analog amplifiers". Analog Integrated Circuits and Signal Processing 86, n.º 3 (21 de janeiro de 2016): 449–58. http://dx.doi.org/10.1007/s10470-016-0690-8.
Texto completo da fonteKong, Lingshan, Yong Chen, Haohong Yu, Chirn Chye Boon, Pui-In Mak e Rui P. Martins. "Wideband Variable-Gain Amplifiers Based on a Pseudo-Current-Steering Gain-Tuning Technique". IEEE Access 9 (2021): 35814–23. http://dx.doi.org/10.1109/access.2021.3062360.
Texto completo da fonteSchneider, A., e O. Werther. "Nonlinear Analysis of Noise in Current-Steering Variable Gain Amplifiers". IEEE Journal of Solid-State Circuits 39, n.º 2 (fevereiro de 2004): 290. http://dx.doi.org/10.1109/jssc.2003.821782.
Texto completo da fontePetrzela, Jiri, e Roman Sotner. "Binary Memory Implemented by Using Variable Gain Amplifiers With Multipliers". IEEE Access 8 (2020): 197276–86. http://dx.doi.org/10.1109/access.2020.3034665.
Texto completo da fonteGodoy, Philip, e Joel L. Dawson. "Chopper Stabilization of Analog Multipliers, Variable Gain Amplifiers, and Mixers". IEEE Journal of Solid-State Circuits 43, n.º 10 (outubro de 2008): 2311–21. http://dx.doi.org/10.1109/jssc.2008.2004328.
Texto completo da fonteKim, Chang-Woo. "Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications". ETRI Journal 28, n.º 3 (9 de junho de 2006): 386–88. http://dx.doi.org/10.4218/etrij.06.0205.0134.
Texto completo da fonteIIZUKA, K., M. KOUTANI, T. MITSUNAKA, H. KAWAMURA, S. TOYOYAMA, M. MIYAMOTO e A. MATSUZAWA. "RF Variable-Gain Amplifiers and AGC Loops for Digital TV Receivers". IEICE Transactions on Electronics E91-C, n.º 6 (1 de junho de 2008): 854–61. http://dx.doi.org/10.1093/ietele/e91-c.6.854.
Texto completo da fonteBameri, H., H. Abdollahi e A. Hakimi. "A comprehensive, adjustable approach for linearizing and broadening the gain characteristic of variable gain amplifiers". Microelectronics Journal 45, n.º 8 (agosto de 2014): 1079–86. http://dx.doi.org/10.1016/j.mejo.2014.04.041.
Texto completo da fonteLee, Samuel B. S., Hang Liu, Kiat Seng Yeo, Jer-Ming Chen e Xiaopeng Yu. "Design of Differential Variable-Gain Transimpedance Amplifier in 0.18 µm SiGe BiCMOS". Electronics 9, n.º 7 (27 de junho de 2020): 1058. http://dx.doi.org/10.3390/electronics9071058.
Texto completo da fonteSnow, K. H., J. J. Komiak e D. A. Bates. "Segmented dual-gate MESFETs for variable gain and power amplifiers in GaAs MMIC". IEEE Transactions on Microwave Theory and Techniques 36, n.º 12 (dezembro de 1988): 1976–85. http://dx.doi.org/10.1109/22.17442.
Texto completo da fonteKobayashi, K. W., A. K. Oki, D. K. Umemoto, S. K. Z. Claxton e D. C. Streit. "Monolithic GaAs HBT p-i-n diode variable gain amplifiers, attenuators, and switches". IEEE Transactions on Microwave Theory and Techniques 41, n.º 12 (1993): 2295–302. http://dx.doi.org/10.1109/22.260720.
Texto completo da fontedel Pino, J., Sunil L. Khemchandani, D. Galante-Sempere e C. Luján-Martínez. "A Compact Size Wideband RF-VGA Based on Second Generation Controlled Current Conveyors". Electronics 9, n.º 10 (30 de setembro de 2020): 1600. http://dx.doi.org/10.3390/electronics9101600.
Texto completo da fonteZvorykin, V. D., N. V. Didenko, A. A. Ionin, I. V. Kholin, A. V. Konyashchenko, O. N. Krokhin, A. O. Levchenko et al. "GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept". Laser and Particle Beams 25, n.º 3 (20 de julho de 2007): 435–51. http://dx.doi.org/10.1017/s0263034607000559.
Texto completo da fonteAbdelfattah, K. M., e A. M. Soliman. "Variable gain amplifiers based on a new approximation method to realize the exponential function". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49, n.º 9 (setembro de 2002): 1348–54. http://dx.doi.org/10.1109/tcsi.2002.802365.
Texto completo da fonteArigong, Bayaner, Hualiang Zhang, Sungyong Jung e Hyoungsoo Kim. "A feed-forward equalizer with winner-take-all variable gain amplifiers for backplane channels". Microwave and Optical Technology Letters 55, n.º 11 (26 de agosto de 2013): 2666–70. http://dx.doi.org/10.1002/mop.27924.
Texto completo da fonteLiu, Hang, Xi Zhu, Chirn Chye Boon e Xiaofeng He. "Cell-Based Variable-Gain Amplifiers With Accurate dB-Linear Characteristic in 0.18 µm CMOS Technology". IEEE Journal of Solid-State Circuits 50, n.º 2 (fevereiro de 2015): 586–96. http://dx.doi.org/10.1109/jssc.2014.2368132.
Texto completo da fonteLanghammer, Lukas, Roman Sotner, Jan Dvorak, Jan Jerabek e Peter A. Ushakov. "Novel Reconnection-Less Reconfigurable Filter Design Based on Unknown Nodal Voltages Method and Its Fractional-Order Counterpart". Elektronika ir Elektrotechnika 25, n.º 3 (25 de junho de 2019): 34–38. http://dx.doi.org/10.5755/j01.eie.25.3.23673.
Texto completo da fonteGu, Cheng Jie, Xiang Ning Fan, Kuan Bao e Zai Jun Hua. "Design of a Reconfigurable Mixer for Multi-Mode Multi-Standard Receivers". Applied Mechanics and Materials 618 (agosto de 2014): 553–57. http://dx.doi.org/10.4028/www.scientific.net/amm.618.553.
Texto completo da fonteZeb, Muhammad, Muhammad Tahir, Fida Muhammad, Suhana Mohd Said, Mohd Faizul Mohd Sabri, Mahidur R. Sarker, Sawal Hamid Md Ali e Fazal Wahab. "Amplified Spontaneous Emission and Optical Gain in Organic Single Crystal Quinquethiophene". Crystals 9, n.º 12 (21 de novembro de 2019): 609. http://dx.doi.org/10.3390/cryst9120609.
Texto completo da fonteRUNGE, K., P. J. ZAMPARDI, R. L. PIERSON, R. YU, P. B. THOMAS, S. M. BECCUE e K. C. WANG. "AlGaAs/GaAs HBT CIRCUITS FOR OPTICAL TDM COMMUNICATIONS". International Journal of High Speed Electronics and Systems 09, n.º 02 (junho de 1998): 473–503. http://dx.doi.org/10.1142/s012915649800021x.
Texto completo da fonteHan, Jingyu, Yu Jiang, Guiliang Guo e Xu Cheng. "A Reconfigurable Analog Baseband Circuitry for LFMCW RADAR Receivers in 130-nm SiGe BiCMOS Process". Electronics 9, n.º 5 (18 de maio de 2020): 831. http://dx.doi.org/10.3390/electronics9050831.
Texto completo da fonteKumar, Umesh, e P. Bhushan Mital. "Design, Fabrication, and Comparative Study of Electronically Tunable Active Filters". Active and Passive Electronic Components 18, n.º 2 (1995): 73–109. http://dx.doi.org/10.1155/1995/78209.
Texto completo da fonteMayer, U., F. Ellinger e R. Eickhoff. "Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-band". IET Circuits, Devices & Systems 4, n.º 5 (2010): 433. http://dx.doi.org/10.1049/iet-cds.2009.0299.
Texto completo da fonteNam, Hyosung, Taejoo Sim e Junghyun Kim. "A 2.4 GHz 20 W 8-channel RF Source Module with Solid-State Power Amplifiers for Plasma Generators". Electronics 9, n.º 9 (26 de agosto de 2020): 1378. http://dx.doi.org/10.3390/electronics9091378.
Texto completo da fonteSOLIMAN, EMAN A., e SOLIMAN A. MAHMOUD. "THE DIFFERENTIAL DIFFERENCE OPERATIONAL FLOATING AMPLIFIER: NEW CMOS REALIZATIONS AND APPLICATIONS". Journal of Circuits, Systems and Computers 18, n.º 07 (novembro de 2009): 1287–308. http://dx.doi.org/10.1142/s0218126609005666.
Texto completo da fonteMoriyama, Takuro, e Daisuke Kurabayashi. "Adaptive Control Using an Oscillator Network with Capacitive Couplers". Journal of Advanced Computational Intelligence and Intelligent Informatics 15, n.º 6 (20 de agosto de 2011): 632–38. http://dx.doi.org/10.20965/jaciii.2011.p0632.
Texto completo da fonteHyun, Eugin, Young-Seok Jin e Jong-Hun Lee. "Design and Implementation of 24 GHz Multichannel FMCW Surveillance Radar with a Software-Reconfigurable Baseband". Journal of Sensors 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3148237.
Texto completo da fonteGaspar, Imre, Yanxun V. Yu, Sean L. Cotton, Dae-Hwan Kim, Anne Ephrussi e Michael A. Welte. "Klar ensures thermal robustness of oskar localization by restraining RNP motility". Journal of Cell Biology 206, n.º 2 (21 de julho de 2014): 199–215. http://dx.doi.org/10.1083/jcb.201310010.
Texto completo da fonteNguyen Thi, Bao My, Van Sy Nguyen, Van Tien Vu, Quang Tuan Ho, Thuy Mai Nguyen Thi, Ngoc Thiem Le, Thi Anh Vo e Manh Hung Nguyen. "Equipment for measuring the characteristics of X-ray". Nuclear Science and Technology 6, n.º 2 (24 de setembro de 2021): 39–46. http://dx.doi.org/10.53747/jnst.v6i2.155.
Texto completo da fonteKim, Jungah, Yongho Lee, Shinil Chang e Hyunchol Shin. "Low-Power CMOS Complex Bandpass Filter with Passband Flatness Tunability". Electronics 9, n.º 3 (17 de março de 2020): 494. http://dx.doi.org/10.3390/electronics9030494.
Texto completo da fonteNguyen, Van-Viet, Hyohyun Nam, Young Choe, Bok-Hyung Lee e Jung-Dong Park. "An X-band Bi-Directional Transmit/Receive Module for a Phased Array System in 65-nm CMOS". Sensors 18, n.º 8 (6 de agosto de 2018): 2569. http://dx.doi.org/10.3390/s18082569.
Texto completo da fonteWheeler, Diek W., Paul H. M. Kullmann e John P. Horn. "Estimating Use-Dependent Synaptic Gain in Autonomic Ganglia by Computational Simulation and Dynamic-Clamp Analysis". Journal of Neurophysiology 92, n.º 5 (novembro de 2004): 2659–71. http://dx.doi.org/10.1152/jn.00470.2004.
Texto completo da fonteEvseev, Vladimir, Mikhail Ivlev, Elena Lupanova, Sergey Nikulin, Vitaliy Petrov e Andrey Terentyev. "Automation of S-parameters measurements of high-power microwave transistors in a contact device with tunable strip matching circuits". ITM Web of Conferences 30 (2019): 11002. http://dx.doi.org/10.1051/itmconf/20193011002.
Texto completo da fonteGupta, Ritesh, Servin Rathi, Ravneet Kaur, Mridula Gupta e R. S. Gupta. "T-gate geometric (solution for submicrometer gate length) HEMT: Physical analysis, modeling and implementation as parasitic elements and its usage as dual gate for variable gain amplifiers". Superlattices and Microstructures 45, n.º 3 (março de 2009): 105–16. http://dx.doi.org/10.1016/j.spmi.2008.12.032.
Texto completo da fonteAlkhorshid, Daniel Rostami, Seyyedeh Fatemeh Molaeezadeh e Mikaeil Rostami Alkhorshid. "Analysis: Electroencephalography Acquisition System: Analog Design". Biomedical Instrumentation & Technology 54, n.º 5 (1 de setembro de 2020): 346–51. http://dx.doi.org/10.2345/0899-8205-54.5.346.
Texto completo da fonteZhang, Jing Zhi. "A 520MHz Wideband Variable Gain Amplifier". Applied Mechanics and Materials 556-562 (maio de 2014): 1564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1564.
Texto completo da fonteBalteanu, F., e M. Cloutier. "Charge-pump controlled variable gain amplifier". Electronics Letters 34, n.º 9 (1998): 838. http://dx.doi.org/10.1049/el:19980644.
Texto completo da fonteAsgari, Vahid, e Leonid Belostotski. "Wideband 28-nm CMOS Variable-Gain Amplifier". IEEE Transactions on Circuits and Systems I: Regular Papers 67, n.º 1 (janeiro de 2020): 37–47. http://dx.doi.org/10.1109/tcsi.2019.2942492.
Texto completo da fonteChaudhry, Q., R. Alidio, G. Sakamoto e T. Cisco. "A SiGe MMIC variable gain cascode amplifier". IEEE Microwave and Wireless Components Letters 12, n.º 11 (novembro de 2002): 424–25. http://dx.doi.org/10.1109/lmwc.2002.805533.
Texto completo da fonteFloc'h, J. M., e L. Desclos. "Variable gain amplifier with traveling wave structure". Microwave and Optical Technology Letters 7, n.º 12 (20 de agosto de 1994): 539–42. http://dx.doi.org/10.1002/mop.4650071203.
Texto completo da fonteEl-Gabaly, A. M., e C. E. Saavedra. "Wideband variable gain amplifier with noise cancellation". Electronics Letters 47, n.º 2 (2011): 116. http://dx.doi.org/10.1049/el.2010.3226.
Texto completo da fonteThanachayanont, Apinunt. "Low-voltage compact CMOS variable gain amplifier". AEU - International Journal of Electronics and Communications 62, n.º 6 (junho de 2008): 413–20. http://dx.doi.org/10.1016/j.aeue.2007.06.002.
Texto completo da fonte