Artigos de revistas sobre o tema "Variable prediction horizons"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Variable prediction horizons".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Alamaniotis, Miltiadis, e Georgios Karagiannis. "Integration of Gaussian Processes and Particle Swarm Optimization for Very-Short Term Wind Speed Forecasting in Smart Power". International Journal of Monitoring and Surveillance Technologies Research 5, n.º 3 (julho de 2017): 1–14. http://dx.doi.org/10.4018/ijmstr.2017070101.
Texto completo da fonteAbduljabbar, Rusul L., Hussein Dia e Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction". Journal of Advanced Transportation 2021 (26 de março de 2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Texto completo da fonteMontaser, Eslam, José-Luis Díez e Jorge Bondia. "Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework". Sensors 21, n.º 9 (4 de maio de 2021): 3188. http://dx.doi.org/10.3390/s21093188.
Texto completo da fonteFaria, Álvaro José Gomes de, Sérgio Henrique Godinho Silva, Leônidas Carrijo Azevedo Melo, Renata Andrade, Marcelo Mancini, Luiz Felipe Mesquita, Anita Fernanda dos Santos Teixeira, Luiz Roberto Guimarães Guilherme e Nilton Curi. "Soils of the Brazilian Coastal Plains biome: prediction of chemical attributes via portable X-ray fluorescence (pXRF) spectrometry and robust prediction models". Soil Research 58, n.º 7 (2020): 683. http://dx.doi.org/10.1071/sr20136.
Texto completo da fonteGoldstein, Benjamin A., Michael J. Pencina, Maria E. Montez-Rath e Wolfgang C. Winkelmayer. "Predicting mortality over different time horizons: which data elements are needed?" Journal of the American Medical Informatics Association 24, n.º 1 (29 de junho de 2016): 176–81. http://dx.doi.org/10.1093/jamia/ocw057.
Texto completo da fonteLiu, Chengyuan, Josep Vehí, Parizad Avari, Monika Reddy, Nick Oliver, Pantelis Georgiou e Pau Herrero. "Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal". Sensors 19, n.º 19 (8 de outubro de 2019): 4338. http://dx.doi.org/10.3390/s19194338.
Texto completo da fonteAlmarzooqi, Ameera M., Maher Maalouf, Tarek H. M. El-Fouly, Vasileios E. Katzourakis, Mohamed S. El Moursi e Constantinos V. Chrysikopoulos. "A hybrid machine-learning model for solar irradiance forecasting". Clean Energy 8, n.º 1 (10 de janeiro de 2024): 100–110. http://dx.doi.org/10.1093/ce/zkad075.
Texto completo da fonteFernández Pozo, Rubén, Ana Belén Rodríguez González, Mark Richard Wilby e Juan José Vinagre Díaz. "Analysis of Extended Information Provided by Bluetooth Traffic Monitoring Systems to Enhance Short-Term Level of Service Prediction". Sensors 22, n.º 12 (17 de junho de 2022): 4565. http://dx.doi.org/10.3390/s22124565.
Texto completo da fonteWang, Haowei, Kin On Kwok e Steven Riley. "Forecasting influenza incidence as an ordinal variable using machine learning". Wellcome Open Research 9 (8 de janeiro de 2024): 11. http://dx.doi.org/10.12688/wellcomeopenres.19599.1.
Texto completo da fonteZjavka, Ladislav. "Photovoltaic Energy All-Day and Intra-Day Forecasting Using Node by Node Developed Polynomial Networks Forming PDE Models Based on the L-Transformation". Energies 14, n.º 22 (12 de novembro de 2021): 7581. http://dx.doi.org/10.3390/en14227581.
Texto completo da fonteLi, Gang, Lin Zhong, Wenjun Sun, Shaohua Zhang, Qianjie Liu, Qingsheng Huang e Guoliang Hu. "A Variable Horizon Model Predictive Control for Magnetorheological Semi-Active Suspension with Air Springs". Sensors 24, n.º 21 (29 de outubro de 2024): 6926. http://dx.doi.org/10.3390/s24216926.
Texto completo da fonteGiraldo, Sergio A. C., Príamo A. Melo e Argimiro R. Secchi. "Tuning of Model Predictive Controllers Based on Hybrid Optimization". Processes 10, n.º 2 (11 de fevereiro de 2022): 351. http://dx.doi.org/10.3390/pr10020351.
Texto completo da fonteMendes, Wanderson de Sousa, e Michael Sommer. "Advancing Soil Organic Carbon and Total Nitrogen Modelling in Peatlands: The Impact of Environmental Variable Resolution and vis-NIR Spectroscopy Integration". Agronomy 13, n.º 7 (6 de julho de 2023): 1800. http://dx.doi.org/10.3390/agronomy13071800.
Texto completo da fonteAslan, Antonio, José-Luis Díez, Alejandro José Laguna Sanz e Jorge Bondia. "On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study". Applied Sciences 13, n.º 9 (25 de abril de 2023): 5348. http://dx.doi.org/10.3390/app13095348.
Texto completo da fonteClingensmith, Christopher M., e Sabine Grunwald. "Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States". Sensors 22, n.º 9 (21 de abril de 2022): 3187. http://dx.doi.org/10.3390/s22093187.
Texto completo da fontePavani-Biju, Barbara, José G. Borges, Susete Marques e Ana C. Teodoro. "Enhancing Forest Site Classification in Northwest Portugal: A Geostatistical Approach Employing Cokriging". Sustainability 16, n.º 15 (26 de julho de 2024): 6423. http://dx.doi.org/10.3390/su16156423.
Texto completo da fonteDill, Robert, Henryk Dobslaw e Maik Thomas. "ESMGFZ EAM Products for EOP Prediction: Toward the Quantification of Time Variable EAM Forecast Errors". Artificial Satellites 58, n.º 4 (1 de dezembro de 2023): 330–40. http://dx.doi.org/10.2478/arsa-2023-0013.
Texto completo da fonteRamspek, Chava L., Marie Evans, Christoph Wanner, Christiane Drechsler, Nicholas C. Chesnaye, Maciej Szymczak, Magdalena Krajewska et al. "Kidney Failure Prediction Models: A Comprehensive External Validation Study in Patients with Advanced CKD". Journal of the American Society of Nephrology 32, n.º 5 (8 de março de 2021): 1174–86. http://dx.doi.org/10.1681/asn.2020071077.
Texto completo da fonteBeauchemin, S., R. R. Simard, M. A. Bolinder, M. C. Nolin e D. Cluis. "Prediction of phosphorus concentration in tile-drainage water from the Montreal Lowlands soils". Canadian Journal of Soil Science 83, n.º 1 (1 de fevereiro de 2003): 73–87. http://dx.doi.org/10.4141/s02-029.
Texto completo da fonteAmara-Ouali, Yvenn, Bachir Hamrouche, Guillaume Principato e Yannig Goude. "Quantifying the Uncertainty of Electric Vehicle Charging with Probabilistic Load Forecasting". World Electric Vehicle Journal 16, n.º 2 (9 de fevereiro de 2025): 88. https://doi.org/10.3390/wevj16020088.
Texto completo da fonteO'Connell, D. A., e P. J. Ryan. "Prediction of three key hydraulic properties in a soil survey of a small forested catchment". Soil Research 40, n.º 2 (2002): 191. http://dx.doi.org/10.1071/sr01036.
Texto completo da fontePark, Sophia, e Myeong Jun Kim. "Forecasting Ultrafine Dust Concentrations in Seoul: A Machine Learning Approach". Atmosphere 16, n.º 3 (20 de fevereiro de 2025): 239. https://doi.org/10.3390/atmos16030239.
Texto completo da fonteHitziger, Martin, e Mareike Ließ. "Comparison of Three Supervised Learning Methods for Digital Soil Mapping: Application to a Complex Terrain in the Ecuadorian Andes". Applied and Environmental Soil Science 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/809495.
Texto completo da fonteZhang, Mengmeng, Guijun Han, Xiaobo Wu, Chaoliang Li, Qi Shao, Wei Li, Lige Cao, Xuan Wang, Wanqiu Dong e Zenghua Ji. "SST Forecast Skills Based on Hybrid Deep Learning Models: With Applications to the South China Sea". Remote Sensing 16, n.º 6 (14 de março de 2024): 1034. http://dx.doi.org/10.3390/rs16061034.
Texto completo da fontePañeda, Emilio Martínez. "Progress and opportunities in modelling environmentally assisted cracking". RILEM Technical Letters 6 (19 de julho de 2021): 70–77. http://dx.doi.org/10.21809/rilemtechlett.2021.145.
Texto completo da fonteBruzda, Joanna. "Does modal (auto)regression produce credible forecasts of macroeconomic indicators?" Wiadomości Statystyczne. The Polish Statistician 2024, n.º 10 (31 de outubro de 2024): 1–27. http://dx.doi.org/10.59139/ws.2024.10.1.
Texto completo da fonteAlekseev, Valery I. "Forecasting changes in the Earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the SUN. Part 2". Yugra State University Bulletin 21, n.º 1 (28 de março de 2025): 48–62. https://doi.org/10.18822/byusu20250148-62.
Texto completo da fonteJin, Yixuan. "Stock Price Analysis and Prediction Method Based on Machine Learning: Taking Apple Inc as an Example". Highlights in Business, Economics and Management 21 (12 de dezembro de 2023): 652–58. http://dx.doi.org/10.54097/hbem.v21i.14720.
Texto completo da fonteAlekseev, Valery I. "Forecasting changes in the earth’s climate system by instrumental measurements and paleodata in the phase-time region, consistent with changes in the barycentric motions of the sun. Part 1". Yugra State University Bulletin 20, n.º 2 (10 de outubro de 2024): 74–96. http://dx.doi.org/10.18822/byusu20240274-96.
Texto completo da fonteWang, Meng, Changhe Niu, Zifan Wang, Yongxin Jiang, Jianming Jian e Xiuying Tang. "Model and Parameter Adaptive MPC Path Tracking Control Study of Rear-Wheel-Steering Agricultural Machinery". Agriculture 14, n.º 6 (24 de maio de 2024): 823. http://dx.doi.org/10.3390/agriculture14060823.
Texto completo da fonteUkalovic, D., B. Leeb, B. Rintelen, G. Eichbauer-Sturm, P. Spellitz, R. Puchner, M. Herold et al. "POS0641 MACHINE LEARNING AND EXPLAINABLE AI METHODS CAN HELP TO PREDICT THE INEFFECTIVENESS OF INDIVIDUAL BIOLOGICAL DISEASE MODIFYING ANTIRHEUMATIC DRUGS (bDMARDS) – DATA FROM THE AUSTRIAN BIOLOGICAL REGISTRY BIOREG". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de maio de 2023): 597. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3479.
Texto completo da fonteLuo, Yaneng, Handong Huang, Yadi Yang, Qixin Li, Sheng Zhang e Jinwei Zhang. "Deepwater reservoir prediction using broadband seismic-driven impedance inversion and seismic sedimentology in the South China Sea". Interpretation 6, n.º 4 (1 de novembro de 2018): SO17—SO29. http://dx.doi.org/10.1190/int-2018-0029.1.
Texto completo da fonteAkhmedov, T. R., e M. A. Aghayeva. "Prediction of petrophysical characteristics of deposits in Kurovdagh field by use of attribute analysis of 3D data". Geofizicheskiy Zhurnal 44, n.º 3 (24 de agosto de 2022): 103–12. http://dx.doi.org/10.24028/gj.v44i3.261976.
Texto completo da fonteLawson, John R., Corey K. Potvin, Patrick S. Skinner e Anthony E. Reinhart. "The Vice and Virtue of Increased Horizontal Resolution in Ensemble Forecasts of Tornadic Thunderstorms in Low-CAPE, High-Shear Environments". Monthly Weather Review 149, n.º 4 (abril de 2021): 921–44. http://dx.doi.org/10.1175/mwr-d-20-0281.1.
Texto completo da fonteGonzález-Enrique, Javier, Juan Jesús Ruiz-Aguilar, José Antonio Moscoso-López, Daniel Urda, Lipika Deka e Ignacio J. Turias. "Artificial Neural Networks, Sequence-to-Sequence LSTMs, and Exogenous Variables as Analytical Tools for NO2 (Air Pollution) Forecasting: A Case Study in the Bay of Algeciras (Spain)". Sensors 21, n.º 5 (4 de março de 2021): 1770. http://dx.doi.org/10.3390/s21051770.
Texto completo da fonteAbduljabbar, Rusul, Hussein Dia e Sohani Liyanage. "Machine Learning Models for Traffic Prediction on Arterial Roads Using Traffic Features and Weather Information". Applied Sciences 14, n.º 23 (27 de novembro de 2024): 11047. http://dx.doi.org/10.3390/app142311047.
Texto completo da fonteBergeron, Jean M., Mélanie Trudel e Robert Leconte. "Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions". Hydrology and Earth System Sciences 20, n.º 10 (28 de outubro de 2016): 4375–89. http://dx.doi.org/10.5194/hess-20-4375-2016.
Texto completo da fonteWentz, Victor Hugo, Joylan Nunes Maciel, Jorge Javier Gimenez Ledesma e Oswaldo Hideo Ando Junior. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models". Energies 15, n.º 7 (27 de março de 2022): 2457. http://dx.doi.org/10.3390/en15072457.
Texto completo da fonteMishra, Pradeep, Khder Alakkari, Mostafa Abotaleb, Pankaj Kumar Singh, Shilpi Singh, Monika Ray, Soumitra Sankar Das et al. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)". Data 6, n.º 11 (2 de novembro de 2021): 113. http://dx.doi.org/10.3390/data6110113.
Texto completo da fonteLopes, Gustavo. "The wisdom of crowds in forecasting at high-frequency for multiple time horizons: A case study of the Brazilian retail sales". Brazilian Review of Finance 20, n.º 2 (19 de junho de 2022): 77–115. http://dx.doi.org/10.12660/rbfin.v20n2.2022.85016.
Texto completo da fonteGong, Chen Chris, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel e Gunnar Luderer. "Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2". Geoscientific Model Development 16, n.º 17 (31 de agosto de 2023): 4977–5033. http://dx.doi.org/10.5194/gmd-16-4977-2023.
Texto completo da fonteMcKenzie, Neil, e David Jacquier. "Improving the field estimation of saturated hydraulic conductivity in soil survey". Soil Research 35, n.º 4 (1997): 803. http://dx.doi.org/10.1071/s96093.
Texto completo da fonteKerry, Colette Gabrielle, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana e Joao Marcos A. C. Souza. "Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system". Geoscientific Model Development 17, n.º 6 (22 de março de 2024): 2359–86. http://dx.doi.org/10.5194/gmd-17-2359-2024.
Texto completo da fonteEl Ghazouli, Khalid, Jamal El Khattabi, Isam Shahrour e Aziz Soulhi. "Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network". H2Open Journal 4, n.º 1 (1 de janeiro de 2021): 276–90. http://dx.doi.org/10.2166/h2oj.2021.107.
Texto completo da fonteDumm, Gabriel, Lauren Fins, Russell T. Graham e Theresa B. Jain. "Distribution of Fine Roots of Ponderosa Pine and Douglas-Fir in a Central Idaho Forest". Western Journal of Applied Forestry 23, n.º 4 (1 de outubro de 2008): 202–5. http://dx.doi.org/10.1093/wjaf/23.4.202.
Texto completo da fonteAler, Ricardo, Javier Huertas-Tato, José M. Valls e Inés M. Galván. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach". Energies 12, n.º 24 (10 de dezembro de 2019): 4713. http://dx.doi.org/10.3390/en12244713.
Texto completo da fonteMendonça de Paiva, Gabriel, Sergio Pires Pimentel, Bernardo Pinheiro Alvarenga, Enes Gonçalves Marra, Marco Mussetta e Sonia Leva. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks". Energies 13, n.º 11 (11 de junho de 2020): 3005. http://dx.doi.org/10.3390/en13113005.
Texto completo da fonteCarreno-Madinabeitia, Sheila, Gabriel Ibarra-Berastegi, Jon Sáenz, Eduardo Zorita e Alain Ulazia. "Sensitivity Studies for a Hybrid Numerical–Statistical Short-Term Wind and Gust Forecast at Three Locations in the Basque Country (Spain)". Atmosphere 11, n.º 1 (29 de dezembro de 2019): 45. http://dx.doi.org/10.3390/atmos11010045.
Texto completo da fonteHe, Hongwen, Jianfei Cao e Jiankun Peng. "Online Prediction with Variable Horizon for Vehicle's Future Driving-Cycle". Energy Procedia 105 (maio de 2017): 2348–53. http://dx.doi.org/10.1016/j.egypro.2017.03.674.
Texto completo da fonteCao, Jianfei, Jiankun Peng e Hongwen He. "Research on Model Prediction Energy Management Strategy with Variable Horizon". Energy Procedia 105 (maio de 2017): 3565–70. http://dx.doi.org/10.1016/j.egypro.2017.03.819.
Texto completo da fonte