Literatura científica selecionada sobre o tema "VORONOVSKAYA THEOREM"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "VORONOVSKAYA THEOREM".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "VORONOVSKAYA THEOREM"

1

Agrawal, Purshottam, Dharmendra Kumar, and Behar Baxhaku. "On the rate of convergence of modified \(\alpha\)-Bernstein operators based on q-integers." Journal of Numerical Analysis and Approximation Theory 51, no. 1 (2022): 3–36. http://dx.doi.org/10.33993/jnaat511-1244.

Texto completo da fonte
Resumo:
In the present paper we define a q-analogue of the modified a-Bernstein operators introduced by Kajla and Acar (Ann. Funct. Anal. 10 (4) 2019, 570-582). We study uniform convergence theorem and the Voronovskaja type asymptotic theorem. We determine the estimate of error in the approximation by these operators by virtue of second order modulus of continuity via the approach of Steklov means and the technique of Peetre's \(K\)-functional. Next, we investigate the Gruss- Voronovskaya type theorem. Further, we define a bivariate tensor product of these operatos and derive the convergence estimates
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kajla, Arun, S. A. Mohiuddine та Abdullah Alotaibi. "Approximation by α-Baskakov−Jain type operators". Filomat 36, № 5 (2022): 1733–41. http://dx.doi.org/10.2298/fil2205733k.

Texto completo da fonte
Resumo:
In this manuscript, we consider the Baskakov-Jain type operators involving two parameters ? and ?. Some approximation results concerning the weighted approximation are discussed. Also, we find a quantitative Voronovskaja type asymptotic theorem and Gr?ss Voronovskaya type approximation theorem for these operators. Some numerical examples to illustrate the approximation of these operators to certain functions are also given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Acar, Tuncer. "Quantitative q-Voronovskaya and q-Grüss–Voronovskaya-type results for q-Szász operators." Georgian Mathematical Journal 23, no. 4 (2016): 459–68. http://dx.doi.org/10.1515/gmj-2016-0007.

Texto completo da fonte
Resumo:
AbstractIn the present paper, we mainly study quantitative Voronovskaya-type theorems for q-Szász operators defined in [20]. We consider weighted spaces of functions and the corresponding weighted modulus of continuity. We obtain the quantitative q-Voronovskaya-type theorem and the q-Grüss–Voronovskaya-type theorem in terms of the weighted modulus of continuity of q-derivatives of the approximated function. In this way, we either obtain the rate of pointwise convergence of q-Szász operators or we present these results for a subspace of continuous functions, although the classical ones are vali
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Galt, S. G. "VORONOVSKAYA-TYPE THEOREM FOR POSITIVE LINEAR OPERATORS BASED ON LAGRANGE INTERPOLATION." Annals of the Academy of Romanian Scientists Series on Mathematics and Its Application 15, no. 1-2 (2023): 86–93. http://dx.doi.org/10.56082/annalsarscimath.2023.1-2.86.

Texto completo da fonte
Resumo:
Since the classical asymptotic theorems of Voronovskaya-type for positive and linear operators are in fact based on the Taylor’s formula which is a very particular case of Lagrange-Hermite interpolation for­mula, in the recent paper Gal [3], I have obtained semi-discrete quanti­tative Voronovskaya-type theorems based on other Lagrange-Hermite interpolation formulas, like Lagrange interpolation on two and three simple knots and Hermite interpolation on two knots, one simple and the other one double. In the present paper we obtain a semi-discrete quantitative Voronovskaya-type theorem based on L
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ivan, Mircea, and Ioan Raşa. "A Voronovskaya-type theorem." Journal of Numerical Analysis and Approximation Theory 30, no. 1 (2001): 47–54. http://dx.doi.org/10.33993/jnaat301-680.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Braha, Naim Latif, Toufik Mansour, and Mohammad Mursaleen. "Some Properties of Kantorovich-Stancu-Type Generalization of Szász Operators including Brenke-Type Polynomials via Power Series Summability Method." Journal of Function Spaces 2020 (August 14, 2020): 1–15. http://dx.doi.org/10.1155/2020/3480607.

Texto completo da fonte
Resumo:
In this paper, we study the Kantorovich-Stancu-type generalization of Szász-Mirakyan operators including Brenke-type polynomials and prove a Korovkin-type theorem via the T-statistical convergence and power series summability method. Moreover, we determine the rate of the convergence. Furthermore, we establish the Voronovskaya- and Grüss-Voronovskaya-type theorems for T-statistical convergence.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Braha, Naim L. "Some properties of modified Szász–Mirakyan operators in polynomial spaces via the power summability method." Journal of Applied Analysis 26, no. 1 (2020): 79–90. http://dx.doi.org/10.1515/jaa-2020-2006.

Texto completo da fonte
Resumo:
AbstractIn this paper we will prove the Korovkin type theorem for modified Szász–Mirakyan operators via A-statistical convergence and the power summability method. Also we give the rate of the convergence related to the above summability methods, and in the last section, we give a kind of Voronovskaya type theorem for A-statistical convergence and Grüss–Voronovskaya type theorem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Grewal, Brijesh, and Meenu Goyal. "Approximation by a family of summation-integral type operators preserving linear functions." Filomat 36, no. 16 (2022): 5563–72. http://dx.doi.org/10.2298/fil2216563g.

Texto completo da fonte
Resumo:
This article investigates the approximation properties of a general family of positive linear operators defined on the unbounded interval [0,?). We prove uniform convergence theorem and Voronovskayatype theorem for functions with polynomial growth. More precisely, we study weighted approximation i.e basic convergence theorems, quantitative Voronovskaya-asymptotic theorems and Gr?ss Voronovskayatype theorems in weighted spaces. Finally, we obtain the rate of convergence of these operators via a suitable weighted modulus of continuity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Uysal, Gümrah. "ON MODIFIED MOMENT-TYPE OPERATORS." Advances in Mathematics: Scientific Journal 10, no. 12 (2021): 3669–77. http://dx.doi.org/10.37418/amsj.10.12.9.

Texto completo da fonte
Resumo:
We propose a modification for moment-type operators in order to preserve the exponential function $e^{2cx}$ with $c>0$ on real axis. First, we present moment identities. Then, we prove two weighted convergence theorems. Finally, we present a Voronovskaya-type theorem for the new operators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gupta, Vijay, and P. N. Agrawal. "Approximation by modified Păltănea operators." Publications de l'Institut Math?matique (Belgrade) 107, no. 121 (2020): 157–64. http://dx.doi.org/10.2298/pim2021157g.

Texto completo da fonte
Resumo:
We discuss some approximation properties of hybrid genuine operators. We find central moments using the concept of moment generating function. A quantitative Voronovskaya and Gruss-Voronovskaya type theorem are proven. Also, we obtain the degree of approximation of the considered operators by means of the second order Ditzian-Totik modulus of smoothness.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "VORONOVSKAYA THEOREM"

1

MISHRA, NAV SHAKTI. "A STUDY ON ESTIMATES OF CONVERGENCE OF CERTAIN APPROXIMATION OPERATORS." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19752.

Texto completo da fonte
Resumo:
This thesis is mainly a study of convergence estimates of various approximation opera tors. Approximation theory is indeed an old topic in mathematical analysis that remains an appealing field of study with several applications. The findings presented here are related to the approximation of specific classes of linear positive operators. The introduc tory chapter is a collection of relevant definitions and literature of concepts that are used throughout this thesis. The second chapter is based on approximation of certain exponential type opera tors. The first section of this chapter presen
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "VORONOVSKAYA THEOREM"

1

Vedi, Tuba, and Mehmet Ali Özarslan. "Voronovskaja Type Approximation Theorem for q-Szasz–Schurer Operators." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28443-9_25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Anastassiou, George A., and Merve Kester. "Voronovskaya Type Asymptotic Expansions for Multivariate Generalized Discrete Singular Operators." In Intelligent Mathematics II: Applied Mathematics and Approximation Theory. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30322-2_16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

"Voronovskaya Like Asymptotic Expansions for Generalized Discrete Singular Operators." In Discrete Approximation Theory. World Scientific, 2016. http://dx.doi.org/10.1142/9789813145849_0003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

"Voronovskaya Like Asymptotic Expansions for Multivariate Generalized Discrete Singular Operators." In Discrete Approximation Theory. World Scientific, 2016. http://dx.doi.org/10.1142/9789813145849_0009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!