Artigos de revistas sobre o tema "Water pipe networks"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Water pipe networks".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Masuda, Naoki, e Fanlin Meng. "Dynamical stability of water distribution networks". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, n.º 2230 (outubro de 2019): 20190291. http://dx.doi.org/10.1098/rspa.2019.0291.
Texto completo da fonteAhn, J. C., S. W. Lee, G. S. Lee e J. Y. Koo. "Predicting water pipe breaks using neural network". Water Supply 5, n.º 3-4 (1 de novembro de 2005): 159–72. http://dx.doi.org/10.2166/ws.2005.0096.
Texto completo da fonteYoung, Brian. "Analysis and optimisation of looped water distribution networks". Journal of the Australian Mathematical Society. Series B. Applied Mathematics 41, n.º 4 (abril de 2000): 508–26. http://dx.doi.org/10.1017/s0334270000011796.
Texto completo da fonteTeleszewski, Tomasz Janusz, Dorota Anna Krawczyk e Antonio Rodero. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study". Energies 12, n.º 24 (10 de dezembro de 2019): 4699. http://dx.doi.org/10.3390/en12244699.
Texto completo da fonteHooda, Nikhil, e Om Damani. "Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks". Drinking Water Engineering and Science 10, n.º 1 (9 de junho de 2017): 39–44. http://dx.doi.org/10.5194/dwes-10-39-2017.
Texto completo da fonteLevinas, Daniel, Gal Perelman e Avi Ostfeld. "Water Leak Localization Using High-Resolution Pressure Sensors". Water 13, n.º 5 (25 de fevereiro de 2021): 591. http://dx.doi.org/10.3390/w13050591.
Texto completo da fonteTabesh, M., J. Soltani, R. Farmani e D. Savic. "Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling". Journal of Hydroinformatics 11, n.º 1 (1 de janeiro de 2009): 1–17. http://dx.doi.org/10.2166/hydro.2009.008.
Texto completo da fonteNeilands, K., M. Bernats e J. Rubulis. "Accumulation and modeling of particles in drinking water pipe fittings". Drinking Water Engineering and Science 5, n.º 1 (3 de setembro de 2012): 47–57. http://dx.doi.org/10.5194/dwes-5-47-2012.
Texto completo da fonteAklog, D., e Y. Hosoi. "Reliability-based optimal design of water distribution networks". Water Supply 3, n.º 1-2 (1 de março de 2003): 11–18. http://dx.doi.org/10.2166/ws.2003.0080.
Texto completo da fonteWols, Bas, Andreas Moerman, Peter Horst e Karel van Laarhoven. "Prediction of Pipe Failure in Drinking Water Distribution Networks by Comsima". Proceedings 2, n.º 11 (6 de agosto de 2018): 589. http://dx.doi.org/10.3390/proceedings2110589.
Texto completo da fonteKang, Won-Hee, Young-Joo Lee e Chunwei Zhang. "Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event". Mathematical Problems in Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/2017046.
Texto completo da fonteSarbu, Ioan, e Gabriel Ostafe. "Determination of Neutral Point in Water Distribution Network Pipes with Variable Discharge on Route". Advanced Materials Research 909 (março de 2014): 428–32. http://dx.doi.org/10.4028/www.scientific.net/amr.909.428.
Texto completo da fonteBoxall, J. B., P. J. Skipworth e A. J. Saul. "Aggressive flushing for discolouration event mitigation in water distribution networks". Water Supply 3, n.º 1-2 (1 de março de 2003): 179–86. http://dx.doi.org/10.2166/ws.2003.0101.
Texto completo da fonteChung, Gunhui, e Won Soo Ohk. "Development of the Urban Water Balance Model by Linking Water Distribution and Sewer Networks". Journal of the Korean Society of Hazard Mitigation 20, n.º 6 (31 de dezembro de 2020): 369–77. http://dx.doi.org/10.9798/kosham.2020.20.6.369.
Texto completo da fonteVlase, Sorin, Marin Marin, Maria Luminița Scutaru, Dumitru Daniel Scărlătescu e Carol Csatlos. "Study on the Mechanical Responses of Plastic Pipes Made of High Density Polyethylene (HDPE) in Water Supply Network". Applied Sciences 10, n.º 5 (1 de março de 2020): 1658. http://dx.doi.org/10.3390/app10051658.
Texto completo da fonteKusuma, Angga Budi. "Pemanfaatan Sistem Informasi Geografis Dalam Evaluasi Kinerja Penyediaan Air Minum Perpipaan (Studi Kasus Sistem Lendah Kabupaten Kulon Progo)". JURNAL GEOGRAFI 10, n.º 1 (2 de janeiro de 2018): 14. http://dx.doi.org/10.24114/jg.v10i1.8629.
Texto completo da fonteFernández-Pato, J., e P. García-Navarro. "Finite volume simulation of unsteady water pipe flow". Drinking Water Engineering and Science 7, n.º 2 (21 de agosto de 2014): 83–92. http://dx.doi.org/10.5194/dwes-7-83-2014.
Texto completo da fonteHerstein, L. M., e Y. R. Filion. "Life-cycle assessment of common water main materials in water distribution networks". Journal of Hydroinformatics 13, n.º 3 (22 de novembro de 2010): 346–57. http://dx.doi.org/10.2166/hydro.2010.127.
Texto completo da fonteShirzad, Akbar, e Massoud Tabesh. "New indices for reliability assessment of water distribution networks". Journal of Water Supply: Research and Technology-Aqua 65, n.º 5 (16 de junho de 2016): 384–95. http://dx.doi.org/10.2166/aqua.2016.091.
Texto completo da fonteSuribabu, C. R. "Differential evolution algorithm for optimal design of water distribution networks". Journal of Hydroinformatics 12, n.º 1 (1 de setembro de 2009): 66–82. http://dx.doi.org/10.2166/hydro.2010.014.
Texto completo da fonteHoțupan, Anca, Roxana Mare e Adriana Hădărean. "Water Loss Reduction in Water Distribution Networks. Case Study". Journal of Applied Engineering Sciences 9, n.º 1 (1 de maio de 2019): 73–80. http://dx.doi.org/10.2478/jaes-2019-0009.
Texto completo da fontePawar, Mukund M., e Nitin P. Sonaje. "Converting Traditional Water Supply Network Into 24x7, using Water GEMS to Optimize Design". International Journal of Recent Technology and Engineering 10, n.º 1 (30 de maio de 2021): 280–84. http://dx.doi.org/10.35940/ijrte.a5937.0510121.
Texto completo da fonteWąsowski, Jacek, Dariusz Kowalski, Beata Kowalska, Marian Kwietniewski e Małgorzata Zawilska. "Water Quality Changes in Cement-Lined Water Pipe Networks". Applied Sciences 9, n.º 7 (30 de março de 2019): 1348. http://dx.doi.org/10.3390/app9071348.
Texto completo da fonteKettler, A. J., e I. C. Goulter. "An analysis of pipe breakage in urban water distribution networks". Canadian Journal of Civil Engineering 12, n.º 2 (1 de junho de 1985): 286–93. http://dx.doi.org/10.1139/l85-030.
Texto completo da fonteMallick, Keshaw N., Iftekhar Ahmed, Kevin S. Tickle e Kevin E. Lansey. "Determining Pipe Groupings for Water Distribution Networks". Journal of Water Resources Planning and Management 128, n.º 2 (março de 2002): 130–39. http://dx.doi.org/10.1061/(asce)0733-9496(2002)128:2(130).
Texto completo da fonteMohammed, Hadi, Hoese Michel Tornyeviadzi e Razak Seidu. "Modelling the impact of water temperature, pipe, and hydraulic conditions on water quality in water distribution networks". Water Practice and Technology 16, n.º 2 (20 de janeiro de 2021): 387–403. http://dx.doi.org/10.2166/wpt.2021.002.
Texto completo da fonteGiraldo-González, Mónica Marcela, e Juan Pablo Rodríguez. "Comparison of Statistical and Machine Learning Models for Pipe Failure Modeling in Water Distribution Networks". Water 12, n.º 4 (17 de abril de 2020): 1153. http://dx.doi.org/10.3390/w12041153.
Texto completo da fonteLi, Zhen, Zijian Lin, Shilei Lyu, Zhiwei Wei e Heqing Huang. "Tree-Type Irrigation Pipe Network Planning and Design Method Using ICSO-ASV". Water 12, n.º 7 (14 de julho de 2020): 1985. http://dx.doi.org/10.3390/w12071985.
Texto completo da fonteMartin-Du Pan, Oliver, Paul Woods e Richard Hanson-Graville. "Optimising pipe sizing and operating temperatures for district heating networks to minimise operational energy consumption". Building Services Engineering Research and Technology 40, n.º 2 (27 de setembro de 2018): 237–55. http://dx.doi.org/10.1177/0143624418802590.
Texto completo da fonteGiustolisi, O., e L. Berardi. "Water distribution network calibration using enhanced GGA and topological analysis". Journal of Hydroinformatics 13, n.º 4 (4 de outubro de 2010): 621–41. http://dx.doi.org/10.2166/hydro.2010.088.
Texto completo da fonteVertommen, Ina, Karel van Laarhoven, Peter van Thienen, Claudia Agudelo-Vera, Tjakko Haaijer e Roel Diemel. "Optimal Design of and Transition towards Water Distribution Network Blueprints". Proceedings 2, n.º 11 (3 de agosto de 2018): 584. http://dx.doi.org/10.3390/proceedings2110584.
Texto completo da fonteNeilands, K., M. Bernats e J. Rubulis. "Accumulation and modeling of particles in drinking water pipe fittings". Drinking Water Engineering and Science Discussions 5, n.º 1 (11 de abril de 2012): 139–71. http://dx.doi.org/10.5194/dwesd-5-139-2012.
Texto completo da fonteMenaia, J., S. T. Coelho, A. Lopes, E. Fonte e J. Palma. "Dependency of bulk chlorine decay rates on flow velocity in water distribution networks". Water Supply 3, n.º 1-2 (1 de março de 2003): 209–14. http://dx.doi.org/10.2166/ws.2003.0105.
Texto completo da fonteGönczi, Gábor. "Computational fluid dynamics aided optimisation of liquid state antiseptic injection to water networks". Water Practice and Technology 9, n.º 3 (1 de setembro de 2014): 362–69. http://dx.doi.org/10.2166/wpt.2014.038.
Texto completo da fonteMotiee, Homayoun, e Sonya Ghasemnejad. "Prediction of pipe failure rate in Tehran water distribution networks by applying regression models". Water Supply 19, n.º 3 (26 de julho de 2018): 695–702. http://dx.doi.org/10.2166/ws.2018.137.
Texto completo da fonteJha, Kailash, e Manish Kumar Mishra. "Object-oriented integrated algorithms for efficient water pipe network by modified Hardy Cross technique". Journal of Computational Design and Engineering 7, n.º 1 (1 de fevereiro de 2020): 56–64. http://dx.doi.org/10.1093/jcde/qwaa006.
Texto completo da fonteGhobadi, Fatemeh, Gimoon Jeong e Doosun Kang. "Water Pipe Replacement Scheduling Based on Life Cycle Cost Assessment and Optimization Algorithm". Water 13, n.º 5 (25 de fevereiro de 2021): 605. http://dx.doi.org/10.3390/w13050605.
Texto completo da fonteLee, Jinwoo, Gunhui Chung, Heeseong Park e Innjoon Park. "Evaluation of the Structure of Urban Stormwater Pipe Network Using Drainage Density". Water 10, n.º 10 (13 de outubro de 2018): 1444. http://dx.doi.org/10.3390/w10101444.
Texto completo da fontePalod, Nikita, Vishnu Prasad e Ruchi Khare. "Non-parametric optimization technique for water distribution in pipe networks". Water Supply 20, n.º 8 (25 de agosto de 2020): 3068–82. http://dx.doi.org/10.2166/ws.2020.200.
Texto completo da fonteShrivastava, V., A. Jaiswal, P. K. Thakur, S. P. Agarwal, P. Kumar, G. K. Kota, D. Carrera, M. K. Dhasmana, V. Sharma e S. Singh. "APPLICATION OF GIS FOR THE DESIGN OF POTABLE WATER DISTRIBUTION SYSTEM IN IIRS". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-5 (15 de novembro de 2018): 87–94. http://dx.doi.org/10.5194/isprs-annals-iv-5-87-2018.
Texto completo da fonteFeng, Cuimin, Na Zhu, Ying Li, Zhen Xu e Ziyu Guo. "Microbial Characteristics of the Combined Ozone and Tea Polyphenols or Sodium Hypochlorite Disinfection in the Pipe Network". Water 13, n.º 13 (30 de junho de 2021): 1835. http://dx.doi.org/10.3390/w13131835.
Texto completo da fonteLaakso, Tuija, Suvi Ahopelto, Tiia Lampola, Teemu Kokkonen e Riku Vahala. "Estimating water and wastewater pipe failure consequences and the most detrimental failure modes". Water Supply 18, n.º 3 (14 de agosto de 2017): 901–9. http://dx.doi.org/10.2166/ws.2017.164.
Texto completo da fonteCampisano, Alberto, e Enrico Creaco. "Advances in Modeling and Management of Urban Water Networks". Water 12, n.º 11 (22 de outubro de 2020): 2956. http://dx.doi.org/10.3390/w12112956.
Texto completo da fonteKim, J. H., C. W. Baek, D. J. Jo, E. S. Kim e M. J. Park. "Optimal planning model for rehabilitation of water networks". Water Supply 4, n.º 3 (1 de junho de 2004): 133–48. http://dx.doi.org/10.2166/ws.2004.0050.
Texto completo da fonteRobles-Velasco, Alicia, Cristóbal Ramos-Salgado, Jesús Muñuzuri e Pablo Cortés. "Artificial Neural Networks to Forecast Failures in Water Supply Pipes". Sustainability 13, n.º 15 (23 de julho de 2021): 8226. http://dx.doi.org/10.3390/su13158226.
Texto completo da fonteChowdhury, R. K., e M. A. Rajput. "Will greywater reuse really affect the sewer flow? Experience of a residential complex in Al Ain, UAE". Water Supply 17, n.º 1 (10 de agosto de 2016): 246–58. http://dx.doi.org/10.2166/ws.2016.131.
Texto completo da fonteBarton, Neal Andrew, Timothy Stephen Farewell, Stephen Henry Hallett e Timothy Francis Acland. "Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks". Water Research 164 (novembro de 2019): 114926. http://dx.doi.org/10.1016/j.watres.2019.114926.
Texto completo da fonteHo, Clifford K. "Solute Mixing Models for Water-Distribution Pipe Networks". Journal of Hydraulic Engineering 134, n.º 9 (setembro de 2008): 1236–44. http://dx.doi.org/10.1061/(asce)0733-9429(2008)134:9(1236).
Texto completo da fonteSarbu, Ioan, e Gabriel Ostafe. "Optimal design of urban water supply pipe networks". Urban Water Journal 13, n.º 5 (15 de janeiro de 2015): 521–35. http://dx.doi.org/10.1080/1573062x.2014.994007.
Texto completo da fonteJowitt, P. W., e Chengchao Xu. "Predicting Pipe Failure Effects in Water Distribution Networks". Journal of Water Resources Planning and Management 119, n.º 1 (janeiro de 1993): 18–31. http://dx.doi.org/10.1061/(asce)0733-9496(1993)119:1(18).
Texto completo da fonte