Gotowa bibliografia na temat „CD8+ Treg cells”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CD8+ Treg cells”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CD8+ Treg cells"
Panda, Abir Kumar, and Ethan M. Shevach. "CD28 co-stimulation drives memory phenotype (MP) Treg cell and MP CD4+Foxp3− effector T cell homeostatic proliferation." Journal of Immunology 200, no. 1_Supplement (2018): 112.11. http://dx.doi.org/10.4049/jimmunol.200.supp.112.11.
Pełny tekst źródłaCeeraz, Sabrina, Charlotte R. Thompson, Richard Beatson, and Ernest H. Choy. "Harnessing CD8+CD28− Regulatory T Cells as a Tool to Treat Autoimmune Disease." Cells 10, no. 11 (2021): 2973. http://dx.doi.org/10.3390/cells10112973.
Pełny tekst źródłaGardell, Jennifer L., Courtney Crane, Justin Bowser, et al. "Bispecific CD8 Treg modulators regulate a novel regulatory CD8 T cell network and eliminate pathogenic CD4 T cells in live cell co-culture system." Journal of Immunology 208, no. 1_Supplement (2022): 174.16. http://dx.doi.org/10.4049/jimmunol.208.supp.174.16.
Pełny tekst źródłaZhang, Zhu Xu, Ye Su, Xuyan Huang, Dameng Lian, and Anthony Jevnikar. "CD4+ but not CD8+ memory T cells escape DN Tregs-mediated regulation via expression of Serpin Protease Inhibitor 6 (P2160)." Journal of Immunology 190, no. 1_Supplement (2013): 69.18. http://dx.doi.org/10.4049/jimmunol.190.supp.69.18.
Pełny tekst źródłaMaurer, Meghan, Justin Bowser, Rachael Fasnacht, et al. "Demonstration of regulatory CD8 T cell prevalence, phenotype, and functions in autoimmune patients treated with a tolerizing peptide vaccine." Journal of Immunology 208, no. 1_Supplement (2022): 123.10. http://dx.doi.org/10.4049/jimmunol.208.supp.123.10.
Pełny tekst źródłaRushbrook, Simon M., Scott M. Ward, Esther Unitt, et al. "Regulatory T Cells Suppress In Vitro Proliferation of Virus-Specific CD8+ T Cells during Persistent Hepatitis C Virus Infection." Journal of Virology 79, no. 12 (2005): 7852–59. http://dx.doi.org/10.1128/jvi.79.12.7852-7859.2005.
Pełny tekst źródłaBotta, Gregory P., Tatiana Hurtado De Mendoza, Harri Jarvelainen, and Erkki Ruoslahti. "iRGD in combination with IL-2 reprograms tumor immunosuppression." Journal of Clinical Oncology 37, no. 8_suppl (2019): 55. http://dx.doi.org/10.1200/jco.2019.37.8_suppl.55.
Pełny tekst źródłaGardell, Jennifer, Daniel Boster, Justin Bowser, et al. "A NOVEL BISPECIFIC CD8 TREG MODULATOR TARGETING CYTOLYTIC CD8 REGULATORY T CELLS REDUCES PATHOGENIC CD4 T CELLS AND INFLAMMATION IN TRANSLATIONAL MODELS OF INTESTINAL AUTOIMMUNE AND INFLAMMATORY DISEASE." Inflammatory Bowel Diseases 29, Supplement_1 (2023): S12. http://dx.doi.org/10.1093/ibd/izac247.024.
Pełny tekst źródłaLi, Rong, Juan Xu, Ming Wu та ін. "Circulating CD4+ Treg, CD8+ Treg, and CD3+ γδ T Cell Subpopulations in Ovarian Cancer". Medicina 59, № 2 (2023): 205. http://dx.doi.org/10.3390/medicina59020205.
Pełny tekst źródłaYamagami, Wataru, Nobuyuki Susumu, Hideo Tanaka, et al. "Immunofluorescence-Detected Infiltration of CD4+FOXP3+ Regulatory T Cells is Relevant to the Prognosis of Patients With Endometrial Cancer." International Journal of Gynecologic Cancer 21, no. 9 (2011): 1628–34. http://dx.doi.org/10.1097/igc.0b013e31822c271f.
Pełny tekst źródłaRozprawy doktorskie na temat "CD8+ Treg cells"
Durost, Philip A. "Evaluation of IL2 and HLA on the Homeostasis and Function of Human CD4 and CD8 T Cells." eScholarship@UMMS, 2009. http://escholarship.umassmed.edu/gsbs_diss/936.
Pełny tekst źródłaDurost, Philip A. "Evaluation of IL2 and HLA on the Homeostasis and Function of Human CD4 and CD8 T Cells." eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/936.
Pełny tekst źródłaHuang, Wenting. "Immunology and Genetics of Autoimmune Biliary Disease." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1447691320.
Pełny tekst źródłaPolak, Katarzyna. "Role of the Eos and Helios transcription factors in regulatory T cell biology." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ011/document.
Pełny tekst źródłaFernandes, Reginaldo Keller [UNESP]. "Alterações transcricionais em células dendríticas e células T CD4+ humanas em resposta ao Paracoccidioides brasiliensis." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/150253.
Pełny tekst źródłaFernandes, Reginaldo Keller. "Alterações transcricionais em células dendríticas e células T CD4+ humanas em resposta ao Paracoccidioides brasiliensis." Botucatu, 2017. http://hdl.handle.net/11449/150253.
Pełny tekst źródłaSérazin, Céline. "Raffinement de l'identité des lymphocytes T régulateurs CD8+ chez l'Homme grâce à l'utilisation des technologies multi-omiques." Thesis, Nantes Université, 2022. http://www.theses.fr/2022NANU1016.
Pełny tekst źródłaAkamatsu, Masahiko. "Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19." Kyoto University, 2020. http://hdl.handle.net/2433/253464.
Pełny tekst źródłaVarikuti, Sanjay. "Role of CD4+CD25+ Regulatory T Lymphocytes in Experimental Toxoplasmosis." TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/113.
Pełny tekst źródłaEbner, Friederike. "The role of microglia phenotypes in modulating CD4 + T cell responses." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16882.
Pełny tekst źródłaCzęści książek na temat "CD8+ Treg cells"
Multhoff, G., E. A. Repasky, and Peter Vaupel. "Mild Hyperthermia Induced by Water-Filtered Infrared A Irradiation: A Potent Strategy to Foster Immune Recognition and Anti-Tumor Immune Responses in Superficial Cancers?" In Water-filtered Infrared A (wIRA) Irradiation. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92880-3_10.
Pełny tekst źródłaChou, Chon-Kit, and Xin Chen. "Preferential Expansion of CD4+Foxp3+ Regulatory T Cells (Tregs) In Vitro by Tumor Necrosis Factor." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0266-9_6.
Pełny tekst źródłaJebbawi, Fadi, Hussein Fayyad-Kazan, Makram Merimi, et al. "A microRNA Profile of Human CD8+ Regulatory T cells and Characterization of the Effects of microRNAs on Treg Cell-Associated Genes." In Immunology and Cancer Biology. Vide Leaf, Hyderabad, 2020. http://dx.doi.org/10.37247/imcac.1.2020.2.
Pełny tekst źródłaSchallenberg, Sonja, Cathleen Petzold, Julia Riewaldt, and Karsten Kretschmer. "Regulatory T Cell-Based Immunotherapy." In Medical Advancements in Aging and Regenerative Technologies. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2506-8.ch006.
Pełny tekst źródłaGu, Chao, and SangKon Oh. "Type 1 Regulatory T Cells and Their Application in Cell Therapy." In Regulatory T Cells [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106852.
Pełny tekst źródłaLu, Chunxia, Anil Kumar Pasupulati, Carey Lumeng, Yong Fan, Mark A. Sperling, and Ram K. Menon. "Targeted Abrogation of Growth Hormone (GH) Action in Macrophages Impairs Insulin Sensitivity and Decreases CD4+FoxP3+T (Treg) Cells in Adipose Tissue." In BASIC/TRANSLATIONAL - Growth Hormone & Prolactin. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part2.p35.p2-324.
Pełny tekst źródłaStreszczenia konferencji na temat "CD8+ Treg cells"
Sugiyama, Daisuke, Tomoaki Muramatsu, Yoichi Kobayashi, et al. "Abstract 3289: The status of the tumor microenvironment changes dynamics of the balance of CD8+T cells and Treg cells in renal cell carcinoma." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3289.
Pełny tekst źródłaGandhi, Shipra, Manu Pandey, Kristopher M. Attwood, et al. "Abstract 4057: Measurement of myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), CD8+and CD4+T-cells, and cytokines/chemokines in patients with metastatic melanoma treated with pembrolizumab and propranolol." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4057.
Pełny tekst źródłaGandhi, Shipra, Manu Pandey, Kristopher M. Attwood, et al. "Abstract 4057: Measurement of myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), CD8+and CD4+T-cells, and cytokines/chemokines in patients with metastatic melanoma treated with pembrolizumab and propranolol." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4057.
Pełny tekst źródłaCillo, Anthony R., Christopher A. Chuckran, Mengting Liao, et al. "Abstract TMIM-063: TARGETING NEUROPILIN-1+ T REGULATORY CELLS IN PATIENTS WITH HIGH GRADE SEROUS OVARIAN CANCER DECREASES TREG-SPECIFIC SUPPRESSION OF CD8+ T CELLS." In Abstracts: 12th Biennial Ovarian Cancer Research Symposium; September 13-15, 2018; Seattle, Washington. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1557-3265.ovcasymp18-tmim-063.
Pełny tekst źródłaWang, Baohui, Hailin Wang, Tingting Li, et al. "841 LBL-019, a novel TNFR2 agonist antibody, shows potent anti-tumor efficacy through preferentially activating CD8+ T cells and alleviating the suppressive effect of Treg cells." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0841.
Pełny tekst źródłaPaustian, Amanda Schmidt, Linlin Guo, Weiguo Feng, et al. "752 CCR8-targeted Treg depletion and PD-1 blockade combine to divert CD8+ T cells from exhaustion associated transcriptional trajectories within the tumor microenvironment." In SITC 39th Annual Meeting (SITC 2024) Abstracts. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.0752.
Pełny tekst źródłaYang, Mingcan, Zetao Liao, Yutong Jiang, and Jieruo Gu. "AB0036 THE IMPACT OF ANTI-TNF THERAPY ON CD4+T CELL SUBSETS IN DIFFERENT DIFFERENTIATION STAGES AND TREG CELLS IN ACTIVE ANKYLOSING SPONDYLITIS." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.5708.
Pełny tekst źródłaPalmeri, Joseph R., Brianna M. Lax, Josh M. Peters, et al. "1224 Tregs constrain CD8+T cell priming required for curative intratumorally anchored anti-4–1BB immunotherapy." In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1224.
Pełny tekst źródłaVan Berckelaer, Christophe, Charlotte Rypens, Steven Van Laere, et al. "Abstract P5-04-04: The spatial interactions between FOXP3+ Tregs, CD8+ cytotoxic T cells and tumor cells predict response to therapy and prognosis in inflammatory breast cancer." In Abstracts: 2019 San Antonio Breast Cancer Symposium; December 10-14, 2019; San Antonio, Texas. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.sabcs19-p5-04-04.
Pełny tekst źródłaDuan, Yanan, Hong-Yan Wen, Yang Liu, et al. "SAT0013 CHANGES AND SIGNIFICANCE OF CD4+CD25+FOXP3+TREG CELLS IN THE PERIPHERAL BLOOD OF PATIENTS WITH AUTOIMMUNE DISEASES." In Annual European Congress of Rheumatology, EULAR 2019, Madrid, 12–15 June 2019. BMJ Publishing Group Ltd and European League Against Rheumatism, 2019. http://dx.doi.org/10.1136/annrheumdis-2019-eular.5530.
Pełny tekst źródła