Gotowa bibliografia na temat „Electron Cyclotron Resonance Plasmas”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Electron Cyclotron Resonance Plasmas”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Electron Cyclotron Resonance Plasmas"

1

Girard, A., D. Hitz, G. Melin, and K. Serebrennikov. "Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)." Review of Scientific Instruments 75, no. 5 (2004): 1381–88. http://dx.doi.org/10.1063/1.1675926.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Shufflebotham, P. K., and D. J. Thomson. "Stability and spatial characterization of electron cyclotron resonance processing plasmas." Canadian Journal of Physics 69, no. 3-4 (1991): 195–201. http://dx.doi.org/10.1139/p91-032.

Pełny tekst źródła
Streszczenie:
This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally
Style APA, Harvard, Vancouver, ISO itp.
3

Girard, A., C. Pernot, G. Melin, and C. Lécot. "Modeling of electron-cyclotron-resonance-heated plasmas." Physical Review E 62, no. 1 (2000): 1182–89. http://dx.doi.org/10.1103/physreve.62.1182.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Outten, C. A., J. C. Barbour, and W. R. Wampler. "Characterization of electron cyclotron resonance hydrogen plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, no. 3 (1991): 717–21. http://dx.doi.org/10.1116/1.577350.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

San Andrés, E., A. Del Prado, A. J. Blázquez, I. Mártil, and G. González-Díaz. "Procesos de oxidación de Si mediante plasma de resonancia ciclotrónica de electrones." Boletín de la Sociedad Española de Cerámica y Vidrio 43, no. 2 (2004): 379–82. http://dx.doi.org/10.3989/cyv.2004.v43.i2.546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hansen, S. K., S. K. Nielsen, J. Stober, et al. "Parametric Decay Instabilities during Electron Cyclotron Resonance Heating of Fusion Plasmas, Problems and Possibilities." EPJ Web of Conferences 277 (2023): 01002. http://dx.doi.org/10.1051/epjconf/202327701002.

Pełny tekst źródła
Streszczenie:
We review parametric decay instabilities (PDIs) expected in connection with electron cyclotron resonance heating (ECRH) of magnetically confined fusion plasmas, with a specific focus on conditions relevant for the ITER tokamak. PDIs involving upper hybrid (UH) waves are likely to occur in O-mode ECRH scenarios at ITER if electron density profiles allowing trapping of UH waves near the ECRH frequency are present. Such PDIs may occur near the plasma center in ITER full-field scenarios heated by 170 GHz O-mode ECRH and on the high-field side of half-field ITER plasmas heated by 110 GHz or 104 GHz
Style APA, Harvard, Vancouver, ISO itp.
7

Pu, Yi-Kang, Zhi-Gang Guo, Zheng-De Kang, et al. "Comparative characterization of high-density plasma reactors using emission spectroscopy from VUV to NIR." Pure and Applied Chemistry 74, no. 3 (2002): 459–64. http://dx.doi.org/10.1351/pac200274030459.

Pełny tekst źródła
Streszczenie:
Emission spectroscopy is used to investigate the effect of inert gas mixing in nitrogen plasmas generated in inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) plasma sources. Vacuum ultraviolet (VUV) emission of resonance lines is used to determine concentration of atomic nitrogen while electron temperature is obtained from optical emission spectra. It is found that electron temperature can be either raised or reduced effectively by mixing helium or argon in a nitrogen discharge. Electron-electron collisions and superelastic collisions involving metastable species are key
Style APA, Harvard, Vancouver, ISO itp.
8

Castagna, T. J., J. L. Shohet, D. D. Denton, and N. Hershkowitz. "X rays in electron‐cyclotron‐resonance processing plasmas." Applied Physics Letters 60, no. 23 (1992): 2856–58. http://dx.doi.org/10.1063/1.106846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Goeckner, M. J., J. A. Meyer, G. ‐H Kim, et al. "Role of contaminants in electron cyclotron resonance plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 5 (1993): 2543–52. http://dx.doi.org/10.1116/1.578605.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Racz, Richárd, Sándor Biri, and József Palinkas. "Visible Light Emission of Electron Cyclotron Resonance Plasmas." IEEE Transactions on Plasma Science 39, no. 11 (2011): 2462–63. http://dx.doi.org/10.1109/tps.2011.2150244.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Electron Cyclotron Resonance Plasmas"

1

Pioch, Romain. "Ion dynamics in the magnetic nozzle of an Electron Cyclotron Resonance Thruster." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX064.

Pełny tekst źródła
Streszczenie:
Au cours des dernières décennies, les moyens de propulsion des satellites ont évolué et la propulsion électrique s’est imposée face à la propulsion chimique classiquement utilisée. Les propulseurs électriques produisent, accélèrent et éjectent un gaz ionisé, appelé plasma, pour générer une force de poussée. Le propulseur ECRA est un concept de propulseur électrique développé à l’ONERA qui bénéficie d’un design simple et innovant. Le plasma est accéléré dans un champ magnétique divergent appelé tuyère magnétique. L’objectif de cette thèse est de comprendre les phénomènes régissant l’accélératio
Style APA, Harvard, Vancouver, ISO itp.
2

Peterschmitt, Simon. "Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.

Pełny tekst źródła
Streszczenie:
Les propulseurs plasmas sont le sujet d’un intérêt grandissant pour équiper de petits satellites. Des miniaturisations de technologies matures ont été proposées ainsi que des concepts innovants, tels le propulseur à résonance cyclotron électronique muni d’une tuyère magnétique (ECRT). Ce propulseur pourrait réaliser une rupture technologique car il est sans grilles, sans neutraliseur et n’a besoin que d’un seul générateur. Le présent travail consiste à développer un ECRT accompagné du dispositif expérimental nécessaire, capable de démontrer avec précision une grande efficacité durant un foncti
Style APA, Harvard, Vancouver, ISO itp.
3

Rashid, Riyaz. "Low temperature electron cyclotron resonance plasma deposition of silicon dioxide." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Majeri, Nassim. "Production de rayons X par plasma ECR." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2077/document.

Pełny tekst źródła
Streszczenie:
Durant cette thèse nous avons caractérisé et amélioré une nouvelle source de rayons X avec unplasma ECR (résonance cyclotronique électronique) permettant de générer des électronsénergétiques de 10 à 120 keV, qui vont ensuite produire le rayonnement X par freinage(bremsstrahlung). Les améliorations de l’installation ont permis d’obtenir une source stable, pouvantfonctionner une journée entière de travail (huit heures) sans arrêt. Dans la première partie de l’étudeexpérimentale on a étudié et déterminé les paramètres optimaux de la source : la pression, lapuissance micro-onde et la configuration
Style APA, Harvard, Vancouver, ISO itp.
5

Kroely, Laurent. "Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma." Phd thesis, Ecole Polytechnique X, 2010. http://pastel.archives-ouvertes.fr/pastel-00550241.

Pełny tekst źródła
Streszczenie:
High deposition rates on large areas are industrial needs for mass production of microcrystalline silicon (μc-Si:H) solar cells. This doctoral work aims at exploring the usefulness of Matrix Distributed Electron Cyclotron Resonance (MDECR) plasmas to process the intrinsic layer of μc-Si:H p-i-n solar cells at high rates. With the high dissociation of silane achieved in MDECR plasmas, deposition rates as high as 6nm/s and 2.8nm/s have been demonstrated in our lab for amorphous and microcrystalline silicon respectively, without hydrogen dilution. This technique is also promising because it can b
Style APA, Harvard, Vancouver, ISO itp.
6

GAUDIN, CHRISTELLE. "Emission de rayons x dans un plasma ecr (electron cyclotron resonance) en vue d'applications medicales." Toulouse 3, 1999. http://www.theses.fr/1999TOU30089.

Pełny tekst źródła
Streszczenie:
Nous avons developpe et etudie une nouvelle source de rayons x (dans la gamme 10-100 kev) en utilisant un plasma a la resonance cyclotronique des electrons. Le dispositif experimental a ete concu et ameliore afin d'obtenir une source a la fois compacte, stable et plus intense. Pour etudier le transfert d'energie de l'onde incidente aux electrons, nous avons d'abord calcule numeriquement la trajectoire des particules dans un champ magnetique homogene et obtenu la dependance de l'energie maximale de l'electron en fonction du champ electrique de l'onde. De plus, nous avons considere un processus
Style APA, Harvard, Vancouver, ISO itp.
7

Sakildien, Muneer. "Plasma characterisation of an electron cyclotron resonance ion source by means of x-ray spectroscopy." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/5212.

Pełny tekst źródła
Streszczenie:
>Magister Scientiae - MSc<br>The ultimate aim of any multiply-charged ion source, like the Electron Cyclotron Resonance Ion Source, ECRIS, is the production of multiply-charged ions, in sufficiently large quantities. These multiplycharged ions, in the case of the ECRIS, are created by a step-by-step ionisation process, whereby neutral atoms are ionised by energetic electrons. The goal of this thesis was to gain an understanding of the relative importance of various ECRIS parameters on the production of these energetic electrons. This was done by measuring the bremsstrahlung continuum emitted b
Style APA, Harvard, Vancouver, ISO itp.
8

Jaju, Vishwas. "Device quality low temperature gate oxide growth using electron cyclotron resonance plasma oxidation of silicon." [Ames, Iowa : Iowa State University], 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zaïm-Bilheux, Hassina. "Design and initial comparative evaluation studies of conventional "surface" and new concept "volume"-type, all permanent magnet electron cyclotron resonance (ECR) ion sources." Versailles-St Quentin en Yvelines, 2003. http://www.theses.fr/2003VERS0008.

Pełny tekst źródła
Streszczenie:
Les sources d'ions à "Résonance cyclotronique d'électrons"(RCE)constituent, à l'heure actuelle, le meilleur choix parmi les sources existantes en ce qui concerne la production des faisceaux continus d'ions positifs hautement chargés. Ces sources produisent des rapports charge-sur-masse très élevés (jusqu'à 0,35 pour l'uranium) et des intensités par charge du [microampère] au mA, ce qui fait leur succès auprès des accélérateurs d'ions lourds à haute énergie. Depuis la naissance du concept dans les années 1970, leurs performances ont régulièrement progressé (amélioration du confinement du plasma
Style APA, Harvard, Vancouver, ISO itp.
10

パスクワ, ロメーロ カミール フェイス, and Camille Faith Pascua Romero. "Development of an electron cyclotron resonance plasma source with an internal antenna for carbon film deposition." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0.

Pełny tekst źródła
Streszczenie:
An electron cyclotron resonance (ECR) plasma source which couples microwave to the plasma using an internal antenna was developed. The use of internal antenna provides a "windowless" power coupling method that can eliminate the issues of contamination which require frequent source maintenance. Antenna structure, magnetic configuration and plasma parameters were modified for carbon film deposition by chemical sputtering. The ECR source generated low-plasma-potential (10 V), high-plasma-density (10^16 m^-3) discharges at low gas pressures (10^-1 Pa) and low input power (100 W). The antenna reali
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Electron Cyclotron Resonance Plasmas"

1

Guest, Gareth. Electron cyclotron heating of plasmas. Wiley-VCH, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Hansen, Flemming Ramskov. Electron cyclotron resonance heating of a high-density plasma. Riso National Laboratory, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. World Scientific, 2009.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. World Scientific, 2008.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wākushoppu Taka Ion Seiseiyō Kōkōritsu Kogata ECR Ion-gen (1999 KEK). Wākushoppu Taka ion seiseiyō kōkōritsu kogata ECR ion-gen: Proceedings of the Workshop on the Compact ECR Ion Source for Highly Charged Ions with High Efficiency, November 29-30, 1999, KEK, Tanashi, Japan. High Energy Accelerator Research Organization (KEK), 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kim, Danny. Dry passivation studies of GaAs(110) surfaces by gallium oxide thin films deposited by electron cyclotron resonance plasma reactive molecular beam epitaxy for optoelectronic device applications. National Library of Canada, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Girka, Volodymyr, Igor Girka, and Manfred Thumm. Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hellblom, Goran. Negative Hydrogen Ions From A Mirror Electron Cyclotron Resonance Source. Studsvik Energiteknik AB, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

International, Workshop on E. C. R. Ion Sources (16th 2004 Berkeley California). Electron cyclotron resonance sources: 16th International Workshop on ECR Ion Sources ECRIS'04, Berkeley, California, 26-30 September 2004. American Institute of Physics, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Topical, Conference on Radio Frequency Power in Plasmas (17th 2007 Clearwater Florida). Radio frequency power in plasmas: 17th Topical Conference on Radio Frequency Power in Plasmas : Clearwater, Florida, 7-9 May 2007. American Institute of Physics, 2007.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Electron Cyclotron Resonance Plasmas"

1

Joseph, J., Y. Z. Hu, and E. A. Irene. "Kinetics of Oxidation of Silicon by Electron Cyclotron Resonance Plasmas." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kaganovich, I., M. Misina, A. Bogaerts, and R. Gijbels. "Investigation of the Electron Distribution Functions in Low Pressure Electron Cyclotron Resonance Discharges." In Advanced Technologies Based on Wave and Beam Generated Plasmas. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Pankove, J., V. Hornback, S. Sritharan, et al. "Electron-Cyclotron-Resonance Plasma Deposition of Carbon onto Silicon." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Burke, Rudolf R. "Applications of Distributed Electron Cyclotron Resonance (DECR) to Plasma-Surface Interaction." In Microwave Discharges. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_32.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Masumoto, Hiroshi, Takashi Goto, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Preparation of Titania Films on Implant Titanium by Electron Cyclotron Resonance Plasma Oxidation." In Key Engineering Materials. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.565.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Masumoto, Hiroshi, Takashi Goto, Yusuke Orii, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Osteoconductivity of Titania Films Prepared by Electron-Cyclotron-Resonance Plasma Oxidation of Implant Titanium." In Bioceramics 20. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.717.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Agius, B., M. C. Hugon, N. Jiang, F. Plais, D. Pribat, and T. Carriere. "Comparison of SiO2 Thin Film Properties Deposited by Distributed Electron Cyclotron Resonance Plasma Using Two Different Oxidant Gases: N2O or O2." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2. Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Shirkov, Grigori D., and Günter Zschornack. "Electron-Cyclotron Resonance Ion Sources." In Electron Impact Ion Sources for Charged Heavy Ions. Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09896-6_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron TM-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron X-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Electron Cyclotron Resonance Plasmas"

1

Niu, X., H. Liu, B. X. Zhang, and D. R. Yu. "The influence of operating parameters on the dynamic characteristics of minimized electron cyclotron resonance ion thruster for space gravitational wave detection." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wang, L., and X. M. Zhu. "A novel concept, “excited-state-system”: applicable to determining the active-particle number density in nitrogen, oxygen and carbon tetrafluoride electron cyclotron resonance plasma." In 2024 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chang, Xiangyun, Yong Jiang, Jay L. Hirshfield, Mikhail Fedurin, Mark Palmer, and Warren Stern. "Electron Cyclotron Resonance Accelerator eCRA." In 2022 IEEE Advanced Accelerator Concepts Workshop (AAC). IEEE, 2022. https://doi.org/10.1109/aac55212.2022.10822888.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gottscho, Richard A., Toshiki Nakano, Nader Sadeghi, Dennis J. Trevor, and Rod W. Boswell. "Ion velocity distributions in electron cyclotron resonance plasmas." In Process Module Metrology, Control and Clustering, edited by Cecil J. Davis, Irving P. Herman, and Terry R. Turner. SPIE, 1992. http://dx.doi.org/10.1117/12.56650.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Michel, G., P. Brand, H. Braune, et al. "Electron Cyclotron Resonance Heating for W7-X." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273813.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Sathyanarayana, K. "Electron Cyclotron Resonance heating system on Tokamak Aditya." In RADIO FREQUENCY POWER IN PLASMAS:14th Topical Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1424193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jin, Shu, Richard Molnar, Donald Y. Jong, and Theodore D. Moustakas. "Characterization of electron cyclotron resonance plasmas for diamond deposition." In San Diego '92, edited by Albert Feldman and Sandor Holly. SPIE, 1992. http://dx.doi.org/10.1117/12.130760.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Ram, Abhay K., and Abraham Bers. "Electron Cyclotron Resonance Heating of Plasmas in Spherical Tori." In Proceedings of the 12th Joint Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705082_0021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mascali, D., S. Gammino, L. Celona, G. Ciavola, Cynthia K. Phillips, and James R. Wilson. "RF Heating in Electron Cyclotron Resonance Ion Sources." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 19th Topical Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Jiang, Y., X. Chang, J. L. Hirshfield, M. Fedurin, M. Palmer, and W. Stern. "Compact Electron Cyclotron Resonance Accelerator." In 2023 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2023. http://dx.doi.org/10.1109/icops45740.2023.10480943.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Electron Cyclotron Resonance Plasmas"

1

Tsai, C. C., L. A. Berry, S. M. Gorbatkin, et al. Potential applications of an electron cyclotron resonance multicusp plasma source. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/7097370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Vernon, R. J. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5182806.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Vernon, R. High-power microwave transmission systems for electron cyclotron resonance plasma heating. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6647695.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Berry, L. A., S. M. Gorbatkin, and R. L. Rhoades. Cu deposition using a permanent magnet electron cyclotron resonance microwave plasma source. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10178692.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Hu, Y. Z., J. Joseph, and E. A. Irene. An In-Situ Spectroscopic Ellipsometry Study of the Electron Cyclotron Resonance Plasma Oxidation of Silicon and Interfacial. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada242833.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fruchtman, A., K. Riedel, H. Weitzner, and D. B. Batchelor. Strong cyclotron damping of electron cyclotron waves in nearly parallel stratified plasmas. Office of Scientific and Technical Information (OSTI), 1986. http://dx.doi.org/10.2172/7242112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pardo, R., and Physics. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/968489.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Felch, K., C. Hess, H. Huey, et al. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6570521.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Choe, W., M. Ono, and C. S. Chang. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field. Office of Scientific and Technical Information (OSTI), 1994. http://dx.doi.org/10.2172/10196164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Ren, Chuang. A study of tearing modes via electron cyclotron emission from tokamak plasmas. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/677101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!