Gotowa bibliografia na temat „Genetic transformation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Genetic transformation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Genetic transformation"
Donmez, Dicle, Ozhan Simsek, Tolga Izgu, Yildiz Aka Kacar i Yesim Yalcin Mendi. "Genetic Transformation inCitrus". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/491207.
Pełny tekst źródłaDe Bustos, A., R. Pérez i N. Jouve. "Study of the homologous recombination genetic system to improve genetic transformation of wheat". Czech Journal of Genetics and Plant Breeding 41, Special Issue (31.07.2012): 290–93. http://dx.doi.org/10.17221/6195-cjgpb.
Pełny tekst źródłaGietz, R. Daniel, i Robin A. Woods. "Genetic Transformation of Yeast". BioTechniques 30, nr 4 (kwiecień 2001): 816–31. http://dx.doi.org/10.2144/01304rv02.
Pełny tekst źródłaMathews, H., H. D. Wilde, R. E. Litz i H. Y. Wetzstein. "GENETIC TRANSFORMATION OF MANGO". Acta Horticulturae, nr 341 (maj 1993): 93–97. http://dx.doi.org/10.17660/actahortic.1993.341.8.
Pełny tekst źródłaMoss, Robert. "Genetic Transformation of Bacteria". American Biology Teacher 53, nr 3 (1.03.1991): 179–80. http://dx.doi.org/10.2307/4449256.
Pełny tekst źródłaBhatia, C. R., Patricia Viegas, Anjali Bhagwat, Helena Mathews i N. K. Notani. "Genetic transformation of plants". Proceedings / Indian Academy of Sciences 96, nr 2 (czerwiec 1986): 79–112. http://dx.doi.org/10.1007/bf03053326.
Pełny tekst źródłaRibas, Alessandra Ferreira, Luiz Filipe Protasio Pereira i Luiz Gonzaga E. Vieira. "Genetic transformation of coffee". Brazilian Journal of Plant Physiology 18, nr 1 (marzec 2006): 83–94. http://dx.doi.org/10.1590/s1677-04202006000100007.
Pełny tekst źródłaLangeveld, S. A., S. Marinova, M. M. Gerrits, A. F. L. M. Derks i P. M. Boonekamp. "GENETIC TRANSFORMATION OF LILY". Acta Horticulturae, nr 430 (grudzień 1997): 290. http://dx.doi.org/10.17660/actahortic.1997.430.43.
Pełny tekst źródłaHe, Liya, Jiao Feng, Sha Lu, Zhiwen Chen, Chunmei Chen, Ya He, Xiuwen Yi i Liyan Xi. "Genetic transformation of fungi". International Journal of Developmental Biology 61, nr 6-7 (2017): 375–81. http://dx.doi.org/10.1387/ijdb.160026lh.
Pełny tekst źródłaTsuda, Masataka, Mikio Karita i Teruo Nakazawa. "Genetic Transformation inHelicobacter pylori". Microbiology and Immunology 37, nr 1 (styczeń 1993): 85–89. http://dx.doi.org/10.1111/j.1348-0421.1993.tb03184.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Genetic transformation"
Zainuddin. "Genetic transformation of wheat (Triticum aestivum L.)". Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspz21.pdf.
Pełny tekst źródłaButton, Eric A. "Regulation of T-DNA gene 7". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26177.
Pełny tekst źródłaMedicine, Faculty of
Medical Genetics, Department of
Graduate
Tor, Mahmut. "Genetic transformation of yam (Dioscorea)". Thesis, Imperial College London, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267504.
Pełny tekst źródłaGartland, Kevan M. A. "Studies on plant genetic transformation". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236507.
Pełny tekst źródłaFryer, Shirley Anne. "Genetic transformation of oilseed rape". Thesis, University of Wolverhampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317928.
Pełny tekst źródłaChen, Dong Fang. "Genetic transformation in the Gramineae". Thesis, Open University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293321.
Pełny tekst źródłaSoloki, Mahmod. "Genetic transformation of grape somatic embryos". Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387659.
Pełny tekst źródłaFaria, Maria José Sparça Salles de. "Red raspberry transformation using agrobacterium". Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69522.
Pełny tekst źródłaThe binary plasmid pBI121 containing the marker genes NPTII and GUS encoding kanamycin resistance and $ beta$-glucuronidase activity, respectively, was successfully introduced into the Agrobacterium strain LBA4404, which is a disarmed C58 derivative. Transformation of 'Comet' red raspberry was apparently achieved by inoculating leaf disc explants with LBA4404 containing pBI121. The probable integration and expression of the foreign genes into the plant cells were confirmed by screening for kanamycin resistance, GUS assays and Southern blot analyses. This transformation system appears to be effective and may be useful in further studies on red raspberry for both introduction of genes for desirable agronomic traits and basic studies of gene expression.
Robson, Julia. "The construction of an expression vector for the transformation of the grape chloroplast genome". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53621.
Pełny tekst źródłaENGLISH ABSTRACT: The genetic information of plants is found in the nucleus, the mitochondria, and the plastids. The DNA of plastids is comprised of multiple copies of a double-stranded, circular, prokaryoticallyderived genome of -150 kb. The genome equivalents of plastid organelles in higher plant cells are an attractive target for genetic engineering as high protein expression levels are readily obtained due to the high genome copy number per organelle. The resultant proteins are contained within the plastid organelle and the corresponding transgenes are inherited, in most crop plants, uniparentally, preventing pollen transmission of DNA. Plastid transformation involves the uniform modification of all the plastid genome copies, a process facilitated by homologous recombination and the non-Mendelian segregation of plastids upon cell division. The plastid genomes are in a continuous state of inter- and intra-molecular exchange due to their common genetic complement. This enables the site-specific integration of any piece of DNA flanked by plastid targeting sequences, via homologous recombination. The attainment of homoplasmy, where all genomes are transformed, requires the inclusion of a plastid-specific selectable marker. Selective pressure favouring the propagation of the transformed genome copies, as well as the random segregation of plastids upon cell division, make it feasible to acquire uniformity and hence genetic stability. From this, a complete transplastomie line is obtained where all plastid genome copies present are transgenic, having eliminated all wild-type genome copies. The prokaryotic nature of the chloroplast genetic system enables expression of multiple proteins from polycistronic mRNAs, allowing the introduction of entire operons in a single transformation. Expression cassettes in vectors thus include single regulatory elements of plastid origin, and harbour genes encoding selectable and screenable markers, as well as one or more genes of interest. Each coding region is preceded by an appropriate translation control region to ensure efficient translation from the polycistronic mRNA. The function of a plastid transformation vector is to enable transfer and stable integration of foreign genes into the chloroplast genomes of higher plants. The expression vector constructed in this research is specific for the transformation of the grape chloroplast genome. Vitis vinifera L., from the family, Vitaceae, is the choice species for the production of wine and therefore our target for plastid transformation. All chloroplast derived regulatory elements and sequences included in the vector thus originated from this species.
AFRIKAANSE OPSOMMING: Die genetiese inligting van plante word gevind in die kern, die mitochondria, en die plastiede. Die DNA van plastiede bestaan uit veelvuldige kopieë van 'n ~ 150 kb dubbelstring, sirkulêre genoom van prokariotiese oorsprong. Die genoomekwivalente van plastiede in hoër plante is 'n aantreklike teiken vir genetiese manipulering, aangesien die hoë genoom kopiegetal per organel dit moontlik maak om gereeld hoë vlakke van proteïenuitdrukking te verkry. Hierdie proteïene word tot die plastied beperk, en die ooreenstemmende transgene word in die meeste plante sitoplasmies oorgeërf, sonder die oordrag van DNA deur die stuifmeel. Plastied transformasie behels die uniforme modifikasie van al die plastied genoomkopieë, 'n proses wat deur homoloë rekombinasie en die nie-Mendeliese segregasie van plastiede tydens seldeling gefasiliteer word. As gevolg van die gemeenskaplike genetiese komplement, vind aanhoudende interen intra-molekulêre uitruiling van plastiedgenome plaas. Dit maak die setel-spesifieke integrasie, via homoloë rekombinasie, van enige stuk DNA wat deur plastied teikenvolgordes begrens word, moontlik. Vir die verkrying van homoplasmie, waar alle genome getransformeer is, word die insluiting van 'n plastiedspesifieke selekteerbare merker benodig. Seleksiedruk wat die vermeerdering van die getransformeerde genoomkopieë bevoordeel, en die lukrake segregasie van plastiede tydens seldeling, maak dit moontlik om genetiese stabiliteit en uniformiteit van die genoom te verkry. Dit kan op sy beurt tot die verkryging van 'n volledige transplastomiese lyn lei, waar alle aanwesige plastiedgenome transgenies is, en wilde tipe genoomkopieë geëlimineer is. Die prokariotiese aard van die chloroplas genetiese sisteem maak die uitdrukking van veelvuldige proteïene vanaf polisistroniese mRNAs moontlik, wat die toevoeging van volledige operons in 'n enkele transformasie toelaat. Uitdrukkingskassette in vektore bevat dus enkel regulatoriese elemente van plastied oorsprong, gene wat kodeer vir selekteerbare en sifbare merkers, asook een of meer gene van belang (teikengene). Voor elke koderingsstreek, is daar ook 'n toepaslike translasie beheerstreek om doeltreffende translasie vanaf die polisistroniese mRNA te verseker. Die funksie van 'n plastied transformasie vektor is om die oordrag en stabiele integrasie van transgene in chloroplasgenome van hoër plante moontlik te maak. Die uitdrukkingsvektor wat in hierdie studie gekonstrueer is, is spesifiek vir die transformasie van die druif chloroplasgenoom. Vitis vinifera L., van die familie Vitaceae, is die voorkeur species vir die produksie van wyn, en daarom die teiken vir plastied transformasie. Alle chloroplast-afgeleide regulatoriese elemente en volgordes wat in hierdie vektor ingesluit is, het huloorsprong vanaf VUis vinifera L.
Cook, Marisa Anne. "Replicons derived from endogenously isolated plasmids used to classify plasmids occurring in marine sediment bacteria". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/25736.
Pełny tekst źródłaKsiążki na temat "Genetic transformation"
Linskens, H. F., i J. F. Jackson. Genetic transformation of plants. Berlin: Springer, 2010.
Znajdź pełny tekst źródłaWalden, R. Genetic transformation in plants. Englewood Cliffs, N.J: Prentice Hall, 1989.
Znajdź pełny tekst źródłaStewart, C. Neal. Plant transformation technologies. Ames, Iowa: Wiley-Blackwell, 2011.
Znajdź pełny tekst źródłaJackson, J. F., i H. F. Linskens, red. Genetic Transformation of Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-07424-4.
Pełny tekst źródłaO, Butler L., Harwood Colin R i Moseley B. E. B, red. Genetic transformation and expression. Andover, Hants [England]: Intercept, 1990.
Znajdź pełny tekst źródłaO, Butler L., Harwood Colin i Moseley B. E. B, red. Genetic transformation and expression. Andover: Intercept, 1989.
Znajdź pełny tekst źródłaWellington, E. M. H. 1954- i Elsas, J. D. van 1951-, red. Genetic interactions between microorgamisms in the natural environment: Gene transfer in nature. Manchester: Manchester University Press, 1992.
Znajdź pełny tekst źródłaKoch-Brandt, Claudia. Gentransfer: Prinzipien, Experimente, Anwendung bei Saügern. Stuttgart: G. Thieme, 1993.
Znajdź pełny tekst źródła1957-, Draper John, red. Plantgenetic transformation and gene expression: A laboratory manual. Oxford: Blackwell Scientific, 1988.
Znajdź pełny tekst źródłaFryer, Shirley Anne. Genetic transformation of oilseed rape. Wolverhampton: University of Wolverhampton, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Genetic transformation"
Birge, Edward A. "Genetic Transformation". W Bacterial and Bacteriophage Genetics, 199–219. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4757-1995-6_8.
Pełny tekst źródłaBirge, Edward A. "Genetic Transformation". W Bacterial and Bacteriophage Genetics, 257–76. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2328-1_10.
Pełny tekst źródłaKroth, Peter G. "Genetic Transformation". W Protein Targeting Protocols, 257–67. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-466-7_17.
Pełny tekst źródłaMondal, Tapan Kumar. "Genetic Transformation". W Breeding and Biotechnology of Tea and its Wild Species, 85–92. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1704-6_5.
Pełny tekst źródłaBirge, Edward A. "Genetic Transformation". W Bacterial and Bacteriophage Genetics, 315–39. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3258-0_10.
Pełny tekst źródłaPeck, Stewart B., Carol C. Mapes, Netta Dorchin, John B. Heppner, Eileen A. Buss, Gustavo Moya-Raygoza, Marjorie A. Hoy i in. "Genetic Transformation". W Encyclopedia of Entomology, 1597–99. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1062.
Pełny tekst źródłaMondal, Tapan Kumar. "Genetic Transformation". W Tea: Genome and Genetics, 127–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8868-6_5.
Pełny tekst źródłaJacobsen, Hans-Jörg. "Genetic Transformation". W Developments in Plant Breeding, 125–32. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9211-6_5.
Pełny tekst źródłaBilang, Roland, Johannes Fütterer i Christof Sautter. "Transformation of Cereals". W Genetic Engineering, 113–57. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4707-5_7.
Pełny tekst źródłaXu, Jun-Wei. "Genetic Transformation System". W Compendium of Plant Genomes, 165–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75710-6_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Genetic transformation"
de França, Fabrício Olivetti. "Transformation-interaction-rational representation for symbolic regression". W GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512290.3528695.
Pełny tekst źródłaAldeia, Guilherme Seidyo Imai, i Fabrício Olivetti de França. "Interaction-transformation evolutionary algorithm with coefficients optimization". W GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3533987.
Pełny tekst źródłaMayer, Benjamin E., i Kay Hamacher. "Stochastic tunneling transformation during selection in genetic algorithm". W GECCO '14: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2576768.2598243.
Pełny tekst źródłaAhn, Eun Yeong, Tracy Mullen i John Yen. "Finding feature transformation functions using genetic algorithm". W the 12th annual conference comp. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1830761.1830862.
Pełny tekst źródłaPan, Shuaiqun, Diederick Vermetten, Manuel López-Ibáñez, Thomas Bäck i Hao Wang. "Transfer Learning of Surrogate Models via Domain Affine Transformation". W GECCO '24: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3638529.3654032.
Pełny tekst źródłaNarinç, Doğan, i Ali Aygün. "A non parametric data transformation technique for quantitative genetic analyses: The rank transformation". W II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981708.
Pełny tekst źródłaSpagnolo, Nicolo, Enrico Maiorino, Chiara Vitelli, Marco Bentivegna, Andrea Crespi, Roberta Ramponi, Paolo Mataloni, Roberto Osellame i Fabio Sciarrino. "Genetic algorithms to learn an unknown linear transformation". W 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087443.
Pełny tekst źródłaFaridmoayer, Sogol, Mohammadreza Sharbaf i Shekoufeh Kolahdouz-Rahimi. "Optimization of model transformation output using genetic algorithm". W 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI). IEEE, 2017. http://dx.doi.org/10.1109/kbei.2017.8324973.
Pełny tekst źródłaLi, Minghui, Kwok Shun Ho i Gordon Hayward. "Beamspace transformation for data reduction using genetic algorithms". W 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5442004.
Pełny tekst źródłaAit ElHara, Ouassim, Anne Auger i Nikolaus Hansen. "Permuted Orthogonal Block-Diagonal Transformation Matrices for Large Scale Optimization Benchmarking". W GECCO '16: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2908812.2908937.
Pełny tekst źródłaRaporty organizacyjne na temat "Genetic transformation"
Voth, Wayne. Genetic Transformation Among Azotobacter Species. Portland State University Library, styczeń 2000. http://dx.doi.org/10.15760/etd.2613.
Pełny tekst źródłaSeger, Yvette R. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2002. http://dx.doi.org/10.21236/ada410207.
Pełny tekst źródłaSeger, Yvette. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2004. http://dx.doi.org/10.21236/ada429117.
Pełny tekst źródłaSeger, Yvette M. Genetic Requirements for the Transformation of Human Cells. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2003. http://dx.doi.org/10.21236/ada418793.
Pełny tekst źródłaGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng i A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, styczeń 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Pełny tekst źródłaGray, Dennis, i Victor Gaba. Genotype, Explant and Growth Regulator Effects in the Determination of Adventitious Regeneratin in Curcurbits, in Aid of Genetic Transformation. United States Department of Agriculture, czerwiec 1992. http://dx.doi.org/10.32747/1992.7561060.bard.
Pełny tekst źródłaNorelli, John L., Moshe Flaishman, Herb Aldwinckle i David Gidoni. Regulated expression of site-specific DNA recombination for precision genetic engineering of apple. United States Department of Agriculture, marzec 2005. http://dx.doi.org/10.32747/2005.7587214.bard.
Pełny tekst źródłaRon, Eliora, i Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, marzec 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Pełny tekst źródłaTzfira, Tzvi, Michael Elbaum i Sharon Wolf. DNA transfer by Agrobacterium: a cooperative interaction of ssDNA, virulence proteins, and plant host factors. United States Department of Agriculture, grudzień 2005. http://dx.doi.org/10.32747/2005.7695881.bard.
Pełny tekst źródłaStern, David, i Gadi Schuster. Manipulating Chloroplast Gene Expression: A Genetic and Mechanistic Analysis of Processes that Control RNA Stability. United States Department of Agriculture, czerwiec 2004. http://dx.doi.org/10.32747/2004.7586541.bard.
Pełny tekst źródła