Artykuły w czasopismach na temat „Grapes Genetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Grapes Genetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Qu, Xianping, Jiang Lu i Olusola Lamikanra. "Genetic Diversity in Muscadine and American Bunch Grapes Based on Randomly Amplified Polymorphic DNA (RAPD) Analysis". Journal of the American Society for Horticultural Science 121, nr 6 (listopad 1996): 1020–23. http://dx.doi.org/10.21273/jashs.121.6.1020.
Pełny tekst źródłaRahman, M. Atikur, Subramani P. Balasubramani i Sheikh M. Basha. "Molecular Characterization and Phylogenetic Analysis of MADS-Box Gene VroAGL11 Associated with Stenospermocarpic Seedlessness in Muscadine Grapes". Genes 12, nr 2 (5.02.2021): 232. http://dx.doi.org/10.3390/genes12020232.
Pełny tekst źródłaZhang, Zhan, Luming Zou, Chong Ren, Fengrui Ren, Yi Wang, Peige Fan, Shaohua Li i Zhenchang Liang. "VvSWEET10 Mediates Sugar Accumulation in Grapes". Genes 10, nr 4 (28.03.2019): 255. http://dx.doi.org/10.3390/genes10040255.
Pełny tekst źródłaMorris, J. R., W. A. Sistrunk, J. Junek i C. A. Sims. "Effects of Fruit Maturity, Juice Storage, and Juice Extraction Temperature on Quality of ‘Concord’ Grape Juice". Journal of the American Society for Horticultural Science 111, nr 5 (wrzesień 1986): 742–46. http://dx.doi.org/10.21273/jashs.111.5.742.
Pełny tekst źródłaBowers, J. E., G. S. Dangl, R. Vignani i C. P. Meredith. "Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.)". Genome 39, nr 4 (1.08.1996): 628–33. http://dx.doi.org/10.1139/g96-080.
Pełny tekst źródłaGao, Huanhuan, Xiangtian Yin, Xilong Jiang, Hongmei Shi, Yang Yang, Chaoping Wang, Xiaoyan Dai, Yingchun Chen i Xinying Wu. "Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China". PeerJ 8 (16.06.2020): e9376. http://dx.doi.org/10.7717/peerj.9376.
Pełny tekst źródłaJabco, Jeffrey P., William B. Nesbitt i Dennis J. Werner. "Resistance of Various Classes of Grapes to the Bunch and Muscadine Grape Forms of Black Rot". Journal of the American Society for Horticultural Science 110, nr 6 (listopad 1985): 762–65. http://dx.doi.org/10.21273/jashs.110.6.762.
Pełny tekst źródłaSims, Charles A., Richard P. Johnson, Robert P. Bates i Linda F. Moore. "Harvest Method and Sulfur Dioxide Influence the Postharvest Quality of ‘Noble’ and ‘Stover’ Wine Grapes". Journal of the American Society for Horticultural Science 114, nr 1 (styczeń 1989): 77–81. http://dx.doi.org/10.21273/jashs.114.1.77.
Pełny tekst źródłaKupe, Muhammed, Sezai Ercisli, Tatjana Jovanovic-Cvetkovic, Sadiye Eyduran i Rayda Ayed. "Molecular characterization of wild grapes from northeastern part of Turkey". Genetika 53, nr 1 (2021): 93–102. http://dx.doi.org/10.2298/gensr2101093k.
Pełny tekst źródłaKarn, Avinash, Luis Diaz-Garcia, Noam Reshef, Cheng Zou, David C. Manns, Lance Cadle-Davidson, Anna Katharine Mansfield, Bruce I. Reisch i Gavin L. Sacks. "The Genetic Basis of Anthocyanin Acylation in North American Grapes (Vitis spp.)". Genes 12, nr 12 (9.12.2021): 1962. http://dx.doi.org/10.3390/genes12121962.
Pełny tekst źródłaWijekoon, Champa, i Zoe Quill. "Fungal endophyte diversity in table grapes". Canadian Journal of Microbiology 67, nr 1 (styczeń 2021): 29–36. http://dx.doi.org/10.1139/cjm-2020-0293.
Pełny tekst źródłaNikoghosyan, Maria, Maria Schmidt, Kristina Margaryan, Henry Loeffler-Wirth, Arsen Arakelyan i Hans Binder. "SOMmelier—Intuitive Visualization of the Topology of Grapevine Genome Landscapes Using Artificial Neural Networks". Genes 11, nr 7 (17.07.2020): 817. http://dx.doi.org/10.3390/genes11070817.
Pełny tekst źródłaMedina-Plaza, Cristina, Haley Meade, Nick Dokoozlian, Ravi Ponangi, Tom Blair, David E. Block i Anita Oberholster. "Investigating the Relation between Skin Cell Wall Composition and Phenolic Extractability in Cabernet Sauvignon Wines". Fermentation 8, nr 8 (18.08.2022): 401. http://dx.doi.org/10.3390/fermentation8080401.
Pełny tekst źródłaFlores Breceda, Héctor, Alejandro Isabel Luna Maldonado, María del Carmen Ojeda-Zacarías, Humberto Rodríguez-Fuentes, Juan Antonio Vidales-Contreras, Juan Arredondo Valdez, Beatriz Adriana Rodríguez-Romero i Marina Burgaya-Ribell. "Hyperspectral signatures and reflectance models related to the ripening index in four grape varieties". Journal of Experimental Biology and Agricultural Sciences 10, nr 4 (30.08.2022): 781–88. http://dx.doi.org/10.18006/2022.10(4).781.788.
Pełny tekst źródłaLopes, M. S., D. Mendonça, M. Rodrigues dos Santos, J. E. Eiras-Dias i A. da Câmara Machado. "New insights on the genetic basis of Portuguese grapevine and on grapevine domestication". Genome 52, nr 9 (wrzesień 2009): 790–800. http://dx.doi.org/10.1139/g09-048.
Pełny tekst źródłaZdunić, Goran, Katarina Lukšić, Zora Annamaria Nagy, Ana Mucalo, Katarina Hančević, Tomislav Radić, Lukrecija Butorac i in. "Genetic Structure and Relationships among Wild and Cultivated Grapevines from Central Europe and Part of the Western Balkan Peninsula". Genes 11, nr 9 (20.08.2020): 962. http://dx.doi.org/10.3390/genes11090962.
Pełny tekst źródłaFoster, William. "Sour Grapes". PLoS Biology 4, nr 4 (11.04.2006): e102. http://dx.doi.org/10.1371/journal.pbio.0040102.
Pełny tekst źródłaBrinker, A. M., i L. L. Creasy. "Inhibitors as a Possible Basis for Grape Replant Problem". Journal of the American Society for Horticultural Science 113, nr 3 (maj 1988): 304–9. http://dx.doi.org/10.21273/jashs.113.3.304.
Pełny tekst źródłaChecchia, Ilaria, Renato L. Binati, Eleonora Troiano, Maurizio Ugliano, Giovanna E. Felis i Sandra Torriani. "Unravelling the Impact of Grape Washing, SO2, and Multi-Starter Inoculation in Lab-Scale Vinification Trials of Withered Black Grapes". Fermentation 7, nr 1 (23.03.2021): 43. http://dx.doi.org/10.3390/fermentation7010043.
Pełny tekst źródłaKozina, T. D., E. T. Ilnitskaya i M. V. Makarkina. "PROSPECTS OF USING DNA-MARKERS IN GRAPEVINE BREEDING". Russian Vine 16 (czerwiec 2021): 18–26. http://dx.doi.org/10.32904/2712-8245-2021-16-18-26.
Pełny tekst źródłaPervaiz, Tariq, Cheng Zhang, Muhammad Faheem, Qian Mu i Jinggui Fang. "Chloroplast based genetic diversity among Chinese grapes genotypes". Mitochondrial DNA Part A 28, nr 4 (29.03.2016): 565–69. http://dx.doi.org/10.3109/24701394.2016.1155119.
Pełny tekst źródłaFournier-Level, Alexandre, Loïc Le Cunff, Camila Gomez, Agnès Doligez, Agnès Ageorges, Catherine Roux, Yves Bertrand, Jean-Marc Souquet, Véronique Cheynier i Patrice This. "Quantitative Genetic Bases of Anthocyanin Variation in Grape (Vitis vinifera L. ssp. sativa) Berry: A Quantitative Trait Locus to Quantitative Trait Nucleotide Integrated Study". Genetics 183, nr 3 (31.08.2009): 1127–39. http://dx.doi.org/10.1534/genetics.109.103929.
Pełny tekst źródłaLutskiy, Evgeny O., Alisa E. Mishko i Maria A. Sundyreva. "Impact of Microorganism Priming on Oxidative Processes and the Antioxidant Defense System of Grapes Infected with Downy Mildew". Journal of Siberian Federal University. Biology 14, nr 3 (wrzesień 2001): 381–91. http://dx.doi.org/10.17516/1997-1389-0357.
Pełny tekst źródłaSpiegel-Roy, P., N. Sahar, J. Baron i U. Lavi. "In Vitro Culture and Plant Formation from Grape Cultivars with Abortive Ovules and Seeds". Journal of the American Society for Horticultural Science 110, nr 1 (styczeń 1985): 109–12. http://dx.doi.org/10.21273/jashs.110.1.109.
Pełny tekst źródłaWang, Yan, Zhenhua Liu, Jiang Wu, Liang Hong, Jinjun Liang, Yangmei Ren, Pingyin Guan i Jianfang Hu. "MADS-Box Protein Complex VvAG2, VvSEP3 and VvAGL11 Regulates the Formation of Ovules in Vitis vinifera L. cv. ‘Xiangfei’". Genes 12, nr 5 (26.04.2021): 647. http://dx.doi.org/10.3390/genes12050647.
Pełny tekst źródłaMorcia, Caterina, Giorgio Tumino, Stefano Raimondi, Anna Schneider i Valeria Terzi. "Muscat Flavor in Grapevine: A Digital PCR Assay to Track Allelic Variation in VvDXS Gene". Genes 12, nr 5 (16.05.2021): 747. http://dx.doi.org/10.3390/genes12050747.
Pełny tekst źródłaARADHYA, MALLIKARJUNA K., GERALD S. DANGL, BERNARD H. PRINS, JEAN-MICHEL BOURSIQUOT, M. ANDREW WALKER, CAROLE P. MEREDITH i CHARLES J. SIMON. "Genetic structure and differentiation in cultivated grape, Vitis vinifera L." Genetical Research 81, nr 3 (czerwiec 2003): 179–92. http://dx.doi.org/10.1017/s0016672303006177.
Pełny tekst źródłaHuerta-Acosta, Karla G., Summaira Riaz, Omar Franco-Mora, Juan G. Cruz-Castillo i M. Andrew Walker. "The genetic diversity of wild grapes in Mexico". Genetic Resources and Crop Evolution 69, nr 3 (14.12.2021): 1329–47. http://dx.doi.org/10.1007/s10722-021-01307-0.
Pełny tekst źródłaLekli, Istvan, Diptarka Ray i Dipak K. Das. "Longevity nutrients resveratrol, wines and grapes". Genes & Nutrition 5, nr 1 (4.09.2009): 55–60. http://dx.doi.org/10.1007/s12263-009-0145-2.
Pełny tekst źródłaBrown, Maurus V., James N. Moore, Ronald W. McNew i Patrick Fenn. "Inheritance of Downy Mildew Resistance in Table Grapes". Journal of the American Society for Horticultural Science 124, nr 3 (maj 1999): 262–67. http://dx.doi.org/10.21273/jashs.124.3.262.
Pełny tekst źródłaZhang, Zhijun, Huaifeng Liu, Junli Sun, Songlin Yu, Wang He, Tianyuan Li i Zhao Baolong. "Nontarget Metabolomics of Grape Seed Metabolites Produced by Various Scion–Rootstock Combinations". Journal of the American Society for Horticultural Science 145, nr 4 (lipiec 2020): 247–56. http://dx.doi.org/10.21273/jashs04844-19.
Pełny tekst źródłaSistrunk, W. A., i J. R. Morris. "Quality Acceptance of Juices of Two Cultivars of Muscadine Grapes Mixed with Other Juices". Journal of the American Society for Horticultural Science 110, nr 3 (maj 1985): 328–32. http://dx.doi.org/10.21273/jashs.110.3.328.
Pełny tekst źródłaLi, Beibei, Xiucai Fan, Ying Zhang, Chonghuai Liu i Jianfu Jiang. "Genetic Diversity and Population Structure Analysis of Chinese Wild Grape Using Simple Sequence Repeat Markers". Journal of the American Society for Horticultural Science 146, nr 3 (maj 2021): 158–68. http://dx.doi.org/10.21273/jashs05016-20.
Pełny tekst źródłaNisiotou, Aspasia A., Dimitra Dourou, Maria-Evangelia Filippousi, Ellie Diamantea, Petros Fragkoulis, Chryssoula Tassou i Georgios Banilas. "Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria". BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/508254.
Pełny tekst źródłaKim, Myung-Shin, Youn Young Hur, Ji Hong Kim i Soon-Chun Jeong. "Genome Resequencing, Improvement of Variant Calling, and Population Genomic Analyses Provide Insights into the Seedlessness in the Genus Vitis". G3 Genes|Genomes|Genetics 10, nr 9 (1.09.2020): 3365–77. http://dx.doi.org/10.1534/g3.120.401521.
Pełny tekst źródłaTanapichatsakul, Chutima, Sarunpron Khruengsai i Patcharee Pripdeevech. "In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes". PLOS ONE 15, nr 11 (24.11.2020): e0242862. http://dx.doi.org/10.1371/journal.pone.0242862.
Pełny tekst źródłaSkinner, P. W., M. A. Matthews i R. M. Carlson. "Phosphorus Requirements of Wine Grapes: Extractable Phosphate of Leaves Indicates Phosphorus Status". Journal of the American Society for Horticultural Science 112, nr 3 (maj 1987): 449–54. http://dx.doi.org/10.21273/jashs.112.3.449.
Pełny tekst źródłaSnoussi, H., M. Harbi Ben Slimane, L. Ruiz-García, J. M. Martínez-Zapater i R. Arroyo-García. "Genetic relationship among cultivated and wild grapevine accessions from Tunisia". Genome 47, nr 6 (1.12.2004): 1211–19. http://dx.doi.org/10.1139/g04-072.
Pełny tekst źródłaRiaz, Summaira, Alan C. Tenscher, Brady P. Smith, Daniel A. Ng i M. Andrew Walker. "Use of SSR Markers to Assess Identity, Pedigree, and Diversity of Cultivated Muscadine Grapes". Journal of the American Society for Horticultural Science 133, nr 4 (lipiec 2008): 559–68. http://dx.doi.org/10.21273/jashs.133.4.559.
Pełny tekst źródłaDalbó, M. A., G. N. Ye, N. F. Weeden, W. F. Wilcox i B. I. Reisch. "Marker-assisted Selection for Powdery Mildew Resistance in Grapes". Journal of the American Society for Horticultural Science 126, nr 1 (styczeń 2001): 83–89. http://dx.doi.org/10.21273/jashs.126.1.83.
Pełny tekst źródłaAkkak, A., P. Boccacci i R. Botta. "‘Cardinal’ grape parentage: a case of a breeding mistake". Genome 50, nr 3 (luty 2007): 325–28. http://dx.doi.org/10.1139/g06-145.
Pełny tekst źródłaElmer, P. A. G., i T. Reglinski. "Biosuppression of Botrytis cinerea in grapes". Plant Pathology 55, nr 2 (kwiecień 2006): 155–77. http://dx.doi.org/10.1111/j.1365-3059.2006.01348.x.
Pełny tekst źródłaWang, Bo, Weimin Wu, Xicheng Wang, Zhuangwei Wang i Yaming Qian. "Proteomic Analysis of Pollen–Stigma Interaction between Vitis rotundifolia and Vitis vinifera". Journal of the American Society for Horticultural Science 147, nr 3 (maj 2022): 152–60. http://dx.doi.org/10.21273/jashs05153-21.
Pełny tekst źródłaSommer, Jonas, Andreas Kunzmann, Lara E. Stuthmann i Karin Springer. "The antioxidative potential of sea grapes (Caulerpa lentillifera, Chlorophyta) can be triggered by light to reach comparable values of pomegranate and other highly nutritious fruits". Plant Physiology Reports 27, nr 1 (7.01.2022): 186–91. http://dx.doi.org/10.1007/s40502-021-00637-6.
Pełny tekst źródłaDalbó, M. A., G. N. Ye, N. F. Weeden, H. Steinkellner, K. M. Sefc i B. I. Reisch. "A gene controlling sex in grapevines placed on a molecular marker-based genetic map". Genome 43, nr 2 (15.03.2000): 333–40. http://dx.doi.org/10.1139/g99-136.
Pełny tekst źródłaGiugno, Rosalba, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti, Alfredo Ferro i Dennis Shasha. "GRAPES: A Software for Parallel Searching on Biological Graphs Targeting Multi-Core Architectures". PLoS ONE 8, nr 10 (22.10.2013): e76911. http://dx.doi.org/10.1371/journal.pone.0076911.
Pełny tekst źródłaKadir, Sorkel, Michael Von Weihe i Kassim Al-Khatib. "Photochemical Efficiency and Recovery of Photosystem II in Grapes After Exposure to Sudden and Gradual Heat Stress". Journal of the American Society for Horticultural Science 132, nr 6 (listopad 2007): 764–69. http://dx.doi.org/10.21273/jashs.132.6.764.
Pełny tekst źródłaXie, Zhenqiang, Ziwen Su, Wenran Wang, Le Guan, Yunhe Bai, Xudong Zhu, Xicheng Wang, Haifeng Jia, Jinggui Fang i Chen Wang. "Characterization of VvSPL18 and Its Expression in Response to Exogenous Hormones during Grape Berry Development and Ripening". Cytogenetic and Genome Research 159, nr 2 (2019): 97–108. http://dx.doi.org/10.1159/000503912.
Pełny tekst źródłaMiao, Yuanyuan, Huan Wang, Xiaoyu Xu, Piping Ye, Huimin Wu, Ruirui Zhao, Xuewei Shi i Fei Cai. "Chemical and Sensory Characteristics of Different Red Grapes Grown in Xinjiang, China: Insights into Wines Composition". Fermentation 8, nr 12 (29.11.2022): 689. http://dx.doi.org/10.3390/fermentation8120689.
Pełny tekst źródłaRodríguez-Declet, Arleen, Antonio Castro-Marín, Alessandra Lombini, Onur Sevindik, Serkan Selli, Fabio Chinnici i Adamo Domenico Rombolà. "Characterization of Berry Aromatic Profile of cv. Trebbiano Romagnolo Grapes and Effects of Intercropping with Salvia officinalis L." Agronomy 12, nr 2 (29.01.2022): 344. http://dx.doi.org/10.3390/agronomy12020344.
Pełny tekst źródła