Gotowa bibliografia na temat „Patient-specific phantom”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Patient-specific phantom”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Patient-specific phantom"
Yin, Jun, Manqi Li, Guangli Dai, Hongzhao Zhou, Liang Ma, and Yixiong Zheng. "3D Printed Multi-material Medical Phantoms for Needle-tissue Interaction Modelling of Heterogeneous Structures." Journal of Bionic Engineering 18, no. 2 (2021): 346–60. http://dx.doi.org/10.1007/s42235-021-0031-1.
Pełny tekst źródłaRadojcic, Đeni Smilovic, David Rajlic, Bozidar Casar, et al. "Evaluation of two-dimensional dose distributions for pre-treatment patient-specific IMRT dosimetry." Radiology and Oncology 52, no. 3 (2018): 346–52. http://dx.doi.org/10.2478/raon-2018-0019.
Pełny tekst źródłaCarbone, Marina, Rosanna Maria Viglialoro, Sara Stagnari, et al. "Design, Fabrication, and Preliminary Validation of Patient-Specific Spine Section Phantoms for Use in Training Spine Surgeons Outside the Operating Room/Theatre." Bioengineering 10, no. 12 (2023): 1345. http://dx.doi.org/10.3390/bioengineering10121345.
Pełny tekst źródłaWilson, Lydia J., Sara Belko, Eric Gingold, et al. "3D-Printed Organ-Realistic Phantoms to Verify Quantitative SPECT/CT Accuracy for 177Lu-PSMA-617 Treatment Planning." Pharmaceuticals 18, no. 4 (2025): 550. https://doi.org/10.3390/ph18040550.
Pełny tekst źródłaTakahashi, Wataru, Shota Oshikawa, and Shinichiro Mori. "Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study." British Journal of Radiology 93, no. 1109 (2020): 20190420. http://dx.doi.org/10.1259/bjr.20190420.
Pełny tekst źródłaKollitz, Erika, Haegin Han, Chan Hyeong Kim, et al. "A patient-specific hybrid phantom for calculating radiation dose and equivalent dose to the whole body." Physics in Medicine & Biology 67, no. 3 (2022): 035005. http://dx.doi.org/10.1088/1361-6560/ac4738.
Pełny tekst źródłaYoon, K., C. Jeong, M. Park, et al. "P03.07.B DOSIMETRIC ACCURACY OF CYBERKNIFE STEREOTACTIC RADIOSURGERY FOR BENIGN PERIOPTIC TUMOR." Neuro-Oncology 25, Supplement_2 (2023): ii37—ii38. http://dx.doi.org/10.1093/neuonc/noad137.118.
Pełny tekst źródłaCagni, Elisabetta, Andrea Botti, Matteo Orlandi, et al. "Evaluating the Quality of Patient-Specific Deformable Image Registration in Adaptive Radiotherapy Using a Digitally Enhanced Head and Neck Phantom." Applied Sciences 12, no. 19 (2022): 9493. http://dx.doi.org/10.3390/app12199493.
Pełny tekst źródłaHütter, Larissa, Patrick H. Geoghegan, Paul D. Docherty, Milad S. Lazarjan, Donald Clucas, and Mark Jermy. "Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation." Current Directions in Biomedical Engineering 2, no. 1 (2016): 493–97. http://dx.doi.org/10.1515/cdbme-2016-0109.
Pełny tekst źródłaEhler, Eric D., Brett M. Barney, Patrick D. Higgins, and Kathryn E. Dusenbery. "Patient specific 3D printed phantom for IMRT quality assurance." Physics in Medicine and Biology 59, no. 19 (2014): 5763–73. http://dx.doi.org/10.1088/0031-9155/59/19/5763.
Pełny tekst źródłaRozprawy doktorskie na temat "Patient-specific phantom"
Courtial, Edwin-Joffrey. "Élaboration de matériaux silicone au comportement mécanique adapté pour la réalisation de fantômes aortiques patients-spécifiques." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10023/document.
Pełny tekst źródłaCzęści książek na temat "Patient-specific phantom"
Mehranian, A., M. R. Ay, and H. Zaidi. "CT2MCNP: An Integrated Package for Constructing Patient-Specific Voxel-Based Phantoms Dedicated for MCNP(X) Monte Carlo Code." In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13039-7_80.
Pełny tekst źródła"Anthropomorphic breast phantom production with 3D printer technique to find more accurate factors for average glandular dose calculation." In Book of Abstracts - RAD 2025 Conference. RAD Centre, Niš, Serbia, 2025. https://doi.org/10.21175/rad.abstr.book.2025.19.3.
Pełny tekst źródła"Comparison of patient specific quality assurance (PSQA) results for trigeminal neuralgia (TN) patients receiving CyberKnife stereotactic radiosurgery." In Book of Abstracts - RAD 2025 Conference. RAD Centre, Niš, Serbia, 2025. https://doi.org/10.21175/rad.abstr.book.2025.19.4.
Pełny tekst źródłaChui Chee-Kong, Li Zirui, Anderson James H., et al. "Training and Pretreatment Planning of Interventional Neuroradiology Procedures – Initial Clinical Validation." In Studies in Health Technology and Informatics. IOS Press, 2002. https://doi.org/10.3233/978-1-60750-929-5-96.
Pełny tekst źródła"Investigation of the Effect of photon energy and number on dose in CT scan." In Book of Abstracts - RAD 2025 Conference. RAD Centre, Niš, Serbia, 2025. https://doi.org/10.21175/rad.abstr.book.2025.18.5.
Pełny tekst źródła"Phantom Limbs And Plasticity: Merleau-Ponty And Current Neurobiology." In Plasticity, edited by Tyler M. Williams. Edinburgh University Press, 2022. http://dx.doi.org/10.3366/edinburgh/9781474462112.003.0025.
Pełny tekst źródłaHamid Zoljalali Moghaddam, Seyed. "Applications of Three-Dimensional Printing Technology in Radiotherapy." In Advances in 3D Printing. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109398.
Pełny tekst źródłaShamsabadi, Reza. "3D-Printing Advances in Radiotherapy." In Advances in 3D Printing. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109153.
Pełny tekst źródłaMa, C. "Applications to Patient-Specific Voxel Computational Phantoms in EGS Monte Carlo Codes for Radiation Treatment Involving Photons and Electrons." In Handbook of Anatomical Models for Radiation Dosimetry. Taylor & Francis, 2009. http://dx.doi.org/10.1201/ebk1420059793-c28.
Pełny tekst źródłaA. Verganelakis, Dimitris, and Maria Lyra-Georgosopoulou. "Nuclear Medicine Dosimetry in Paediatric Population." In Dosimetry [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105346.
Pełny tekst źródłaStreszczenia konferencji na temat "Patient-specific phantom"
Park, Changmin, Sihwan Kim, and Jonghyo Kim. "Noise power spectrum analysis in CT for improved patient-specific image optimization: a shift from phantom model to clinical scan." In Physics of Medical Imaging, edited by John M. Sabol, Shiva Abbaszadeh, and Ke Li. SPIE, 2025. https://doi.org/10.1117/12.3046950.
Pełny tekst źródłaSchregle, Robin, Felix Pancheri, Yilun Sun, and Tim C. Lueth. "Creation of Large-Size 3D-printed Patient Specific Phantoms for Training in Robotic Surgery." In 2024 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2024. https://doi.org/10.1109/robio64047.2024.10907324.
Pełny tekst źródłaMondal, Parmita, Kyle A. Williams, Parisa Naghdi, et al. "Exploring injection bias reduction techniques in quantitative angiography using patient-specific phantoms of intracranial aneurysm with diverse morphologies and locations." In Clinical and Biomedical Imaging, edited by Barjor S. Gimi and Andrzej Krol. SPIE, 2025. https://doi.org/10.1117/12.3045246.
Pełny tekst źródłaJuszczyk, Jan, Bartlomiej Pycinski, and Ewa Pietka. "Patient Specific Phantom in bimodal image navigation system." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319000.
Pełny tekst źródłaO’Hara, Ryan P., Gary Iacobucci, Megan Russ, and Ciprian Ionita. "Manufacturing Patient-Specific Phantoms to Treat Aneurysms Using Rotational Angiography and 3-D Modeling." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35693.
Pełny tekst źródłaHorn, Marina, Benjamin Reh, Frederik Wenz, Jan Stallkamp, and Katja Mombaur. "Patient specific corotated FEM simulation and gelatin phantom for prostate brachytherapy." In 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE, 2016. http://dx.doi.org/10.1109/biorob.2016.7523649.
Pełny tekst źródłaIonita, Ciprian N., Maxim Mokin, Nicole Varble, et al. "Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing." In SPIE Medical Imaging, edited by Robert C. Molthen and John B. Weaver. SPIE, 2014. http://dx.doi.org/10.1117/12.2042266.
Pełny tekst źródłaMalinowski, K., C. Noel, W. Lu, et al. "Development of the 4D Phantom for patient-specific, end-to-end radiation therapy QA." In Medical Imaging, edited by Jiang Hsieh and Michael J. Flynn. SPIE, 2007. http://dx.doi.org/10.1117/12.713841.
Pełny tekst źródłaFaber, Tracy L., Ernest V. Garcia, David S. Lalush, W. Paul Segars, and Benjamin M. Tsui. "Simulating patient-specific heart shape and motion using SPECT perfusion images with the MCAT phantom." In Medical Imaging 2001, edited by Seong K. Mun. SPIE, 2001. http://dx.doi.org/10.1117/12.428050.
Pełny tekst źródłaLiu, Yang, Yihao Zheng, John Pitre, William Weitzel, Joseph Bull, and Albert Shih. "Manufacturing and Computational Fluid Dynamics Modeling of a Patient-Specific Fistula Model." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3002.
Pełny tekst źródłaRaporty organizacyjne na temat "Patient-specific phantom"
MR (Diffusion-Weighted Imaging (DWI) of the Apparent Diffusion Coefficient (ADC), Clinically Feasible Profile. Chair Michael Boss, Dariya Malyarenko, and Daniel Margolis. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), 2022. http://dx.doi.org/10.1148/qiba/20221215.
Pełny tekst źródłaUltrasound Measurement of Shear Wave Speed for Estimation Liver Fibrosis, Clinically Feasible Profile. Chair David Fetzer, Stephen McAleavey, and Stephen Rosenzweig. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), 2024. http://dx.doi.org/10.1148/qiba/20240115.
Pełny tekst źródłaCT Lung Densitometry, Consensus QIBA Profile. Chair Charles Hatt and Miranda Kirby. • The Publisher is Radiological Society of North America (RSNA)/Quantitative Imaging Biomarkers Alliance (QIBA), 2020. https://doi.org/10.1148/qiba/20200904.
Pełny tekst źródła