Gotowa bibliografia na temat „Scaffold Bone Defect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Scaffold Bone Defect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Scaffold Bone Defect"
Kim, Jong Min, Jun Sik Son, Seong Soo Kang, Gonhyung Kim, and Seok Hwa Choi. "Bone Regeneration of Hydroxyapatite/Alumina Bilayered Scaffold with 3 mm Passage-Like Medullary Canal in Canine Tibia Model." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/235108.
Pełny tekst źródłaFang, Yifei, Yong Gong, Zhijian Yang, and Yan Chen. "Repair of Osteoporotic Bone Defects Using Adipose-Derived Stromal Cells and Umbilical Vein Endothelial Cells Seeded in Chitosan/Nanohydroxyapatite-P24 Nanocomposite Scaffolds." Journal of Nanomaterials 2021 (August 21, 2021): 1–11. http://dx.doi.org/10.1155/2021/6237130.
Pełny tekst źródłaKessler, Franziska, Kevin Arnke, Benjamin Eggerschwiler, et al. "Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects." International Journal of Molecular Sciences 25, no. 10 (2024): 5555. http://dx.doi.org/10.3390/ijms25105555.
Pełny tekst źródłaLi, Ming, Jianheng Liu, Xiang Cui, et al. "Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection." Regenerative Biomaterials 6, no. 6 (2019): 373–81. http://dx.doi.org/10.1093/rb/rbz019.
Pełny tekst źródłaZhou, Shuai, Shihang Liu, Yan Wang, et al. "Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment." Journal of Functional Biomaterials 14, no. 8 (2023): 406. http://dx.doi.org/10.3390/jfb14080406.
Pełny tekst źródłaLim, Jin Xi, Min He, and Alphonsus Khin Sze Chong. "3D-printed Poly-Lactic Co-Glycolic Acid (PLGA) scaffolds in non-critical bone defects impede bone regeneration in rabbit tibia bone." Bio-Medical Materials and Engineering 32, no. 6 (2021): 375–81. http://dx.doi.org/10.3233/bme-216017.
Pełny tekst źródłaKim, You Min, Min-Soo Ghim, Meiling Quan, Young Yul Kim, and Young-Sam Cho. "Experimental Verification of the Impact of the Contact Area between the Defect Site and the Scaffold on Bone Regeneration Efficacy." Polymers 16, no. 3 (2024): 338. http://dx.doi.org/10.3390/polym16030338.
Pełny tekst źródłaChen, Shuang S., Ophir Ortiz, Alexandra K. Pastino, et al. "Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation." Regenerative Engineering and Translational Medicine 6, no. 2 (2020): 189–200. http://dx.doi.org/10.1007/s40883-019-00144-z.
Pełny tekst źródłaMi, Xue, Zhenya Su, Yu Fu, Shiqi Li, and Anchun Mo. "3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration." Biomedical Materials 17, no. 3 (2022): 035002. http://dx.doi.org/10.1088/1748-605x/ac5ffe.
Pełny tekst źródłaBergmann, Christian J. D., Jim C. E. Odekerken, Tim J. M. Welting, et al. "Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/852610.
Pełny tekst źródłaRozprawy doktorskie na temat "Scaffold Bone Defect"
Lui, Yuk-fai, and 呂旭輝. "Evaluation of porous polyurethane scaffold on facilitating healing in critical sized bone defect." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49858865.
Pełny tekst źródłaWojtowicz, Abigail M. "Genetically-engineered bone marrow stromal cells and collagen mimetic scaffold modification for healing critically-sized bone defects." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34705.
Pełny tekst źródłaHart, Amanda Peter. "BONE ENGINEERING OF THE ULNA OF RABBIT." UKnowledge, 2005. http://uknowledge.uky.edu/gradschool_theses/199.
Pełny tekst źródłaBlomberger, Daniela. "Development of a novel Voronoi structured scaffold for critical-size bone defects." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/206168/1/Daniela_Blomberger_Thesis.pdf.
Pełny tekst źródłaReichert, Johannes Christian. "Tissue engineering bone - reconstruction of critical sized segmental bone defects in a large animal model." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/48080/1/Johannes_Reichert_Thesis.pdf.
Pełny tekst źródłaHenkel, Jan. "Bone tissue engineering in two preclinical ovine animal models." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/109909/1/Jan_Henkel_Thesis.pdf.
Pełny tekst źródłaHeidarkhan, Tehrani Ashkan. "Exploring methods of preparing functional cartilage-bone xenografts for joint repair." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/90556/1/Ashkan_Heidarkhan%20Tehrani_Thesis.pdf.
Pełny tekst źródłaTim, Carla Roberta. "Efeitos do laser de baixa intensidade e do Scaffold de Biosilicato® no processo de reparação óssea." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/6973.
Pełny tekst źródłaJones, Brendan John. "Reconstruction of critical-sized ovine mandibular defects - a pilot study." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/72238/1/Brendan_Jones_Thesis.pdf.
Pełny tekst źródłaRentsch, Claudia, Wolfgang Schneiders, Ricarda Hess, et al. "Healing properties of surface-coated polycaprolactone-co-lactide scaffolds: A pilot study in sheep." Sage, 2014. https://tud.qucosa.de/id/qucosa%3A35693.
Pełny tekst źródłaKsiążki na temat "Scaffold Bone Defect"
Goldberg, Cory S. Bone engineering in a rabbit craniotomy defect using a composite biodegradable scaffold. National Library of Canada, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Scaffold Bone Defect"
Yoon, Sun Jung, Ki Suk Park, Bang Sil Choi, et al. "Effect of DBP/PLGA Hybrid Scaffold on Angiogenesis during the Repair of Calvarial Bone Defect." In Advanced Biomaterials VII. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-436-7.161.
Pełny tekst źródłaAbdullah, Amira Raudhah, and Intan Maslina Musa. "Establishment of Femoral Bone Defect Model in Sprague-Dawley Rat for Engineered Scaffold Implantation: A Pilot Study." In IFMBE Proceedings. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61628-0_3.
Pełny tekst źródłaMin, D. H., M. J. Kim, J. H. Yun, et al. "Effect of Calcium Phosphate Glass Scaffold with Chitosan Membrane on the Healing of Alveolar Bone in 1 Wall Intrabony Defect in the Beagle Dogs." In Bioceramics 17. Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-961-x.851.
Pełny tekst źródłaDaskalakis, Evangelos, Enes Aslan, Fengyuan Liu, et al. "Composite Scaffolds for Large Bone Defects." In Lecture Notes in Mechanical Engineering. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29041-2_31.
Pełny tekst źródłaMetzelder, M. L., and G. H. Willital. "Defekt-Auffüllung mit VITOSS Bone-Scaffold bei zystischen Knochenveränderungen im Kindesalter." In Zurück in die Zukunft. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55611-1_484.
Pełny tekst źródłaPavesio, Alessandra, Giovanni Abatangelo, Anna Borrione, et al. "Hyaluronan-Based Scaffolds (Hyalograft® C) in the Treatment of Knee Cartilage Defects: Preliminary Clinical Findings." In Tissue Engineering of Cartilage and Bone. John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/0470867973.ch15.
Pełny tekst źródłaAlshammari, Adel, Fahad Alabdah, Lipeng Song, and Glen Cooper. "Computational Analysis of Large Bone Defect Healing Using Bone Tissue Scaffolds, Degradation, and Growth Factor Delivery: A Mechanobiological Model of Bone Tissue Formation." In IFMBE Proceedings. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61625-9_25.
Pełny tekst źródłaPark, Min Sung, Young Mee Jung, Soo Hyun Kim, et al. "Regeneration of Bone Defect Using Micro-Bioceramic PLLA Polymer Scaffolds Synthesized by Nonsolvent and Solvent Method." In Advanced Biomaterials VII. Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-436-7.145.
Pełny tekst źródłaRajkumar, Abhishek Verma, Anupam Yadav, Janakarajan Ramkumar, and Kantesh Balani. "Finite Element Analysis on the Biomechanical Stability of TPMS-Based Scaffolds for Large Segmental Femur Bone Defect." In Springer Proceedings in Materials. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5963-7_30.
Pełny tekst źródłaRahaman, Mohamed N., Yinan Lin, Wei Xiao, X. Liu, and B. Sonny Bal. "Evaluation of Long-Term Bone Regeneration in Rat Calvarial Defects Implanted With Strong Porous Bioactive Glass (13-93) Scaffolds." In Ceramic Transactions Series. John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119190134.ch9.
Pełny tekst źródłaStreszczenia konferencji na temat "Scaffold Bone Defect"
Cheng, XingGuo, Sapna Desai, Gloria Gutierrez, et al. "Promising Biological Performance of Biodegradable 3D Coated Mg Alloy Bone Scaffold." In CORROSION 2012. NACE International, 2012. https://doi.org/10.5006/c2012-01178.
Pełny tekst źródłaRusso, Alessandro, Silvia Panseri, Tatiana Shelyakova, et al. "Critical Long Bone Defect Treated by Magnetic Scaffolds and Fixed by Permanent Magnets." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93193.
Pełny tekst źródłaYanoso, Laura, Justin Jacobson, Tulin Dadali, David Reynolds, and Hani Awad. "Evaluation of Polylactic Acid/Beta-Tricalcium Phosphate Scaffolds as Segmental Bone Graft Substitutes." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192978.
Pełny tekst źródłaGupta, Akash, Kyung Chil Chung, Ryan J. Quigley, Bong Jae Jun, and Thay Q. Lee. "Evaluation of Scaffold Fixation for Treatment of Osteochondral Defects of the Knee." In ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32050.
Pełny tekst źródłaLu, Lin, David Wootton, Peter I. Lelkes, and Jack Zhou. "Bone Scaffold Fabrication System Study." In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31219.
Pełny tekst źródłaCohen, David O., Sohaila M. G. Aboutaleb, Amy Wagoner Johnson, and Julian A. Norato. "Computational Design of Additively Manufactured Curvilinear Scaffolds for Bone Repair." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90582.
Pełny tekst źródłaLu, Lin, Robert S. Dembzynski, Mark J. Mondrinos, David Wootton, Peter I. Lelkes, and Jack Zhou. "Manufacturing System Development for Fabrication of Bone Scaffold." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80937.
Pełny tekst źródłaAbdelgaber, Yousef, Cole Klemstine, Logan Lawrence, James B. Day, Pier Paolo Claudio, and Roozbeh (Ross) Salary. "A Novel Image-Based Method for In Situ Characterization of the Pore Size Distribution and Dimensional Accuracy of Bone Tissue Scaffolds." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-72132.
Pełny tekst źródłaBai, Xueling, Peng Ding, Peng Zhang, and Zhidong Yao. "Research on Modeling of Bionic Porous Scaffold for Bone Defect Repair Based on Bone Mineral Density Distribution." In 2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018). Atlantis Press, 2018. http://dx.doi.org/10.2991/cmsa-18.2018.8.
Pełny tekst źródłaHayward, Lauren N. M., and Elise F. Morgan. "Mechano-Regulation of Stem Cell Differentiation During Bending Stimulation of a Healing Bone Defect." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192981.
Pełny tekst źródłaRaporty organizacyjne na temat "Scaffold Bone Defect"
Pilia, Marcello, Teja Guda, and Mark Appleford. Development of Composite Scaffolds for Load Bearing Segmental Bone Defects. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada616641.
Pełny tekst źródła