Artykuły w czasopismach na temat „Scaffold Bone Defect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Scaffold Bone Defect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kim, Jong Min, Jun Sik Son, Seong Soo Kang, Gonhyung Kim, and Seok Hwa Choi. "Bone Regeneration of Hydroxyapatite/Alumina Bilayered Scaffold with 3 mm Passage-Like Medullary Canal in Canine Tibia Model." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/235108.
Pełny tekst źródłaFang, Yifei, Yong Gong, Zhijian Yang, and Yan Chen. "Repair of Osteoporotic Bone Defects Using Adipose-Derived Stromal Cells and Umbilical Vein Endothelial Cells Seeded in Chitosan/Nanohydroxyapatite-P24 Nanocomposite Scaffolds." Journal of Nanomaterials 2021 (August 21, 2021): 1–11. http://dx.doi.org/10.1155/2021/6237130.
Pełny tekst źródłaKessler, Franziska, Kevin Arnke, Benjamin Eggerschwiler, et al. "Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects." International Journal of Molecular Sciences 25, no. 10 (2024): 5555. http://dx.doi.org/10.3390/ijms25105555.
Pełny tekst źródłaLi, Ming, Jianheng Liu, Xiang Cui, et al. "Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection." Regenerative Biomaterials 6, no. 6 (2019): 373–81. http://dx.doi.org/10.1093/rb/rbz019.
Pełny tekst źródłaZhou, Shuai, Shihang Liu, Yan Wang, et al. "Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment." Journal of Functional Biomaterials 14, no. 8 (2023): 406. http://dx.doi.org/10.3390/jfb14080406.
Pełny tekst źródłaLim, Jin Xi, Min He, and Alphonsus Khin Sze Chong. "3D-printed Poly-Lactic Co-Glycolic Acid (PLGA) scaffolds in non-critical bone defects impede bone regeneration in rabbit tibia bone." Bio-Medical Materials and Engineering 32, no. 6 (2021): 375–81. http://dx.doi.org/10.3233/bme-216017.
Pełny tekst źródłaKim, You Min, Min-Soo Ghim, Meiling Quan, Young Yul Kim, and Young-Sam Cho. "Experimental Verification of the Impact of the Contact Area between the Defect Site and the Scaffold on Bone Regeneration Efficacy." Polymers 16, no. 3 (2024): 338. http://dx.doi.org/10.3390/polym16030338.
Pełny tekst źródłaChen, Shuang S., Ophir Ortiz, Alexandra K. Pastino, et al. "Hybrid Bone Scaffold Induces Bone Bridging in Goat Calvarial Critical Size Defects Without Growth Factor Augmentation." Regenerative Engineering and Translational Medicine 6, no. 2 (2020): 189–200. http://dx.doi.org/10.1007/s40883-019-00144-z.
Pełny tekst źródłaMi, Xue, Zhenya Su, Yu Fu, Shiqi Li, and Anchun Mo. "3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration." Biomedical Materials 17, no. 3 (2022): 035002. http://dx.doi.org/10.1088/1748-605x/ac5ffe.
Pełny tekst źródłaBergmann, Christian J. D., Jim C. E. Odekerken, Tim J. M. Welting, et al. "Calcium Phosphate Based Three-Dimensional Cold Plotted Bone Scaffolds for Critical Size Bone Defects." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/852610.
Pełny tekst źródłaCanciani, Elena, Paola Straticò, Vincenzo Varasano, et al. "Polylevolysine and Fibronectin-Loaded Nano-Hydroxyapatite/PGLA/Dextran-Based Scaffolds for Improving Bone Regeneration: A Histomorphometric in Animal Study." International Journal of Molecular Sciences 24, no. 9 (2023): 8137. http://dx.doi.org/10.3390/ijms24098137.
Pełny tekst źródłaSemyari, Hossein, Majid Salehi, Ferial Taleghani, et al. "Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering." Journal of Biomaterials Applications 33, no. 4 (2018): 501–13. http://dx.doi.org/10.1177/0885328218805229.
Pełny tekst źródłaYun, JW, SY Heo, MH Lee, and HB Lee. "Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model." Veterinární Medicína 64, No. 12 (2019): 531–38. http://dx.doi.org/10.17221/80/2019-vetmed.
Pełny tekst źródłaRonca, Alfredo, Vincenzo Guarino, Maria Grazia Raucci, et al. "Large defect-tailored composite scaffolds for in vivo bone regeneration." Journal of Biomaterials Applications 29, no. 5 (2014): 715–27. http://dx.doi.org/10.1177/0885328214539823.
Pełny tekst źródłaVigni, Giulio Edoardo, Mariano Licciardi, Lorenzo D’itri, et al. "Improved Bone Regeneration Using Biodegradable Polybutylene Succinate Artificial Scaffold with BMP-2 Protein in a Rabbit Model." Materials 18, no. 10 (2025): 2234. https://doi.org/10.3390/ma18102234.
Pełny tekst źródłaSchlichting, Karin, Hanna Schell, Ralf U. Kleemann, et al. "Influence of Scaffold Stiffness on Subchondral Bone and Subsequent Cartilage Regeneration in an Ovine Model of Osteochondral Defect Healing." American Journal of Sports Medicine 36, no. 12 (2008): 2379–91. http://dx.doi.org/10.1177/0363546508322899.
Pełny tekst źródłaWang, Wenzhao, Boqing Zhang, Lihong Zhao, et al. "Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application." Nanotechnology Reviews 10, no. 1 (2021): 1359–73. http://dx.doi.org/10.1515/ntrev-2021-0083.
Pełny tekst źródłaShah, Sarav S., Haixiang Liang, Sandeep Pandit, et al. "Optimization of Degradation Profile for New Scaffold in Cartilage Repair." CARTILAGE 9, no. 4 (2017): 438–49. http://dx.doi.org/10.1177/1947603517700954.
Pełny tekst źródłaSithole, Mduduzi N., Pradeep Kumar, Lisa C. Du Toit, Kennedy H. Erlwanger, Philemon N. Ubanako, and Yahya E. Choonara. "A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies." International Journal of Molecular Sciences 24, no. 8 (2023): 7611. http://dx.doi.org/10.3390/ijms24087611.
Pełny tekst źródłaCharbonnier, B., L. Guyon, N. Touya, et al. "MECHANICALLY EVOLUTIVE 3D-PRINTED SCAFFOLDS FOR BONE REGENERATION." Orthopaedic Proceedings 106-B, SUPP_1 (2024): 63. http://dx.doi.org/10.1302/1358-992x.2024.1.063.
Pełny tekst źródłaPeña, Gonzalo de la, Lorena Gallego, Luis M. Redondo, Luis Junquera, Javier F. Doval, and Álvaro Meana. "Comparative analysis of plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane in critical mandibular bone defects: An experimental study on rats." Journal of Biomaterials Applications 36, no. 3 (2021): 481–91. http://dx.doi.org/10.1177/0885328221999824.
Pełny tekst źródłaWang, Xiaoyang, Shuqing Tong, Shengyun Huang, Li Ma, Zhenxing Liu, and Dongsheng Zhang. "Application of a New Type of Natural Calcined Bone Repair Material Combined with Concentrated Growth Factors in Bone Regeneration in Rabbit Critical-Sized Calvarial Defect." BioMed Research International 2020 (November 24, 2020): 1–6. http://dx.doi.org/10.1155/2020/8810747.
Pełny tekst źródłaGabor, Alin, Tiberiu Hosszu, Cristian Zaharia, et al. "3D Printing of a Mandibular Bone Deffect." Materiale Plastice 54, no. 1 (2017): 29–31. http://dx.doi.org/10.37358/mp.17.1.4778.
Pełny tekst źródłaAlonso-Fernández, Iván, Håvard Jostein Haugen, Liebert Parreiras Nogueira, et al. "Enhanced Bone Healing in Critical-Sized Rabbit Femoral Defects: Impact of Helical and Alternate Scaffold Architectures." Polymers 16, no. 9 (2024): 1243. http://dx.doi.org/10.3390/polym16091243.
Pełny tekst źródłaUnni, Ashok R., Syam K. Venugopal, K. D. John Martin, S. Anoop, S. Maya Maya та B. Dhanush Krishna. "Serum biochemical evaluation of healing of critical-sized long bone defects in rats treated with biphasic hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds". Journal of Veterinary and animal sciences 55, № 3 (2024): 586–92. http://dx.doi.org/10.51966/jvas.2024.55.3.586-592.
Pełny tekst źródłaLee, Ming-Chan, Cheng-Tang Pan, Wen-Fan Chen, Meng-Chi Lin, and Yow-Ling Shiue. "Design, Manufacture, and Characterization of a Critical-Sized Gradient Porosity Dual-Material Tibial Defect Scaffold." Bioengineering 11, no. 4 (2024): 308. http://dx.doi.org/10.3390/bioengineering11040308.
Pełny tekst źródłaGani, Maria Apriliani, Aniek Setiya Budiatin, Dewi Wara Shinta, Chrismawan Ardianto, and Junaidi Khotib. "Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect." Journal of Applied Biomaterials & Functional Materials 21 (January 2023): 228080002211491. http://dx.doi.org/10.1177/22808000221149193.
Pełny tekst źródłaDombrovskaya, Yu A., N. I. Enukashvili, R. E. Banashkov, N. Yu Semenova, I. A. Karabak, and A. V. Silin. "Prospects for the use of fibrin scaffolds populated with pulp and periodontal stem cells: an experimental study." Parodontologiya 26, no. 2 (2021): 96–103. http://dx.doi.org/10.33925/1683-3759-2021-26-2-96-103.
Pełny tekst źródłaYoon, Sun Jung, Ki Suk Park, Bang Sil Choi, et al. "Effect of DBP/PLGA Hybrid Scaffold on Angiogenesis during the Repair of Calvarial Bone Defect." Key Engineering Materials 342-343 (July 2007): 161–64. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.161.
Pełny tekst źródłaWeng, Weizong, Shaojun Song, Liehu Cao, et al. "A Comparative Study of Bioartificial Bone Tissue Poly-L-lactic Acid/Polycaprolactone and PLLA Scaffolds Applied in Bone Regeneration." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/935149.
Pełny tekst źródłaVerykokou, Styliani, Charalabos Ioannidis, Sofia Soile, et al. "The Role of Cone Beam Computed Tomography in Periodontology: From 3D Models of Periodontal Defects to 3D-Printed Scaffolds." Journal of Personalized Medicine 14, no. 2 (2024): 207. http://dx.doi.org/10.3390/jpm14020207.
Pełny tekst źródłaLesci, Isidoro Giorgio, Leonardo Ciocca, Odila Mezini, and Norberto Roveri. "Synthetic Biomimetic HA Composite Scaffolds for the Bone Regenerative Medicine Using CAD-CAM Technology." Key Engineering Materials 672 (January 2016): 235–46. http://dx.doi.org/10.4028/www.scientific.net/kem.672.235.
Pełny tekst źródłaCristescu, Ioan, Lucian Marina, Daniel Vilcioiu, F. Safta, M. Istodorescu, and A. Stere. "The Potential of Antibiotic Collagen Based Biocomposites for the Treatment of Bone Defects." Key Engineering Materials 587 (November 2013): 404–11. http://dx.doi.org/10.4028/www.scientific.net/kem.587.404.
Pełny tekst źródłaZhu, Hong, Ziheng Lin, Qifei Luan, et al. "Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration." International Journal of Bioprinting 10, no. 1 (2023): 0153. http://dx.doi.org/10.36922/ijb.0153.
Pełny tekst źródłaFauzan, Fauzan. "Effect of Human Adipose-Derived Mesenchymal Stem Cell (HADMSC) With Chitosan Scaffold on Bone Defect White Rats (Rattus Norvegicus) on Serum Alkaline Phosphatase (ALP) Levels." Journal of Stem Cell Research and Tissue Engineering 6, no. 1 (2022): 39–47. http://dx.doi.org/10.20473/jscrte.v6i1.37514.
Pełny tekst źródłaChen, Chiu-Fang, Ya-Shuan Chou, Tzer-Min Lee, et al. "The Uniform Distribution of Hydroxyapatite in a Polyurethane Foam-Based Scaffold (PU/HAp) to Enhance Bone Repair in a Calvarial Defect Model." International Journal of Molecular Sciences 25, no. 12 (2024): 6440. http://dx.doi.org/10.3390/ijms25126440.
Pełny tekst źródłaV., Sasi Kumar, Beeula A., Praveen Kumar та Naveen Kumar. "Influence of typographic biocomposite scaffold in facilitating biomineralization to progress complex hard tissue repair". BOHR Journal of Material Sciences and Engineering (BIJMSE) 1, № 1 (2023): 7–10. http://dx.doi.org/10.54646/bjmse.2023.02.
Pełny tekst źródłaKumar, V. Sasi, A. Beeula, Praveen Kumar, and Naveen Kumar. "Influence of Typographic Biocomposite Scaffold in Facilitating Biomineralization to Progress Complex Hard Tissue Repair." BOHR International Journal of Material Sciences and Engineering 1, no. 1 (2022): 7–10. http://dx.doi.org/10.54646/bijmse.002.
Pełny tekst źródłaHung, Kuo-Sheng, May-Show Chen, Wen-Chien Lan, et al. "Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential." Materials 15, no. 5 (2022): 1971. http://dx.doi.org/10.3390/ma15051971.
Pełny tekst źródłaZhang, Wang, Fu, Ye, Wang, and Zhou. "Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect." Molecules 24, no. 9 (2019): 1669. http://dx.doi.org/10.3390/molecules24091669.
Pełny tekst źródłaYang, Changsheng, Lei Zhou, Xiaodan Geng, Hui Zhang, Baolong Wang, and Bin Ning. "New dual-function in situ bone repair scaffolds promote osteogenesis and reduce infection." Journal of Biological Engineering 16, no. 1 (2022). http://dx.doi.org/10.1186/s13036-022-00302-y.
Pełny tekst źródłaJaber, Mahdi, Patrina S. P. Poh, Georg N. Duda, and Sara Checa. "PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An in silico study." Frontiers in Bioengineering and Biotechnology 10 (September 23, 2022). http://dx.doi.org/10.3389/fbioe.2022.995266.
Pełny tekst źródłaLiu, Bingchuan, Guojin Hou, Zhongwei Yang, et al. "Repair of critical diaphyseal defects of lower limbs by 3D printed porous Ti6Al4V scaffolds without additional bone grafting: a prospective clinical study." Journal of Materials Science: Materials in Medicine 33, no. 9 (2022). http://dx.doi.org/10.1007/s10856-022-06685-0.
Pełny tekst źródłaSingh, Srujan, Yuxiao Zhou, Ashley L. Farris, et al. "Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs." Advanced Healthcare Materials, August 10, 2023. http://dx.doi.org/10.1002/adhm.202301944.
Pełny tekst źródłaHuiwen, Wu, Liang Shuai, Xie Jia, et al. "3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects." Journal of Biological Engineering 18, no. 1 (2024). http://dx.doi.org/10.1186/s13036-024-00416-5.
Pełny tekst źródłaRothweiler, R., S. Kuhn, T. Stark, et al. "Development of a new critical size defect model in the paranasal sinus and first approach for defect reconstruction—An in vivo maxillary bone defect study in sheep." Journal of Materials Science: Materials in Medicine 33, no. 11 (2022). http://dx.doi.org/10.1007/s10856-022-06698-9.
Pełny tekst źródłaSuzuki, Shigeto, Venkata Suresh Venkataiah, Yoshio Yahata, et al. "Correction of large jaw bone defect in the mouse using immature osteoblast-like cells and a three dimensional polylactic acid scaffold." PNAS Nexus, August 8, 2022. http://dx.doi.org/10.1093/pnasnexus/pgac151.
Pełny tekst źródłaTao, Yuan, Meng Jia, Yang Shao-Qiang, et al. "A novel fluffy PLGA/HA composite scaffold for bone defect repair." Journal of Materials Science: Materials in Medicine 35, no. 1 (2024). http://dx.doi.org/10.1007/s10856-024-06782-2.
Pełny tekst źródłaJahromi, Hossein Kargar, Morteza Alizadeh, Arian Ehterami та ін. "EVALUATION OF THE EFFECT OF POLY (𝜀-CAPROLACTONE)/POLY (L-LACTIC) ACID/GELATIN NANOFIBER 3D SCAFFOLD CONTAINING RESVERATROL ON BONE REGENERATION". Biomedical Engineering: Applications, Basis and Communications 35, № 05 (2023). http://dx.doi.org/10.4015/s1016237223500278.
Pełny tekst źródłaMa, Lan, Yijun Yu, Hanxiao Liu, et al. "Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-020-79734-9.
Pełny tekst źródła