Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: 3D macroporous carbon.

Статті в журналах з теми "3D macroporous carbon"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "3D macroporous carbon".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lv, Kuilin, Yanchen Fan, Ying Zhu, et al. "Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol." Journal of Materials Chemistry A 6, no. 12 (2018): 5025–31. http://dx.doi.org/10.1039/c7ta10802h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hu, Xiang, Yangjie Liu, Junxiang Chen, Jingchun Jia, Hongbing Zhan, and Zhenhai Wen. "FeS quantum dots embedded in 3D ordered macroporous carbon nanocomposite for high-performance sodium-ion hybrid capacitors." Journal of Materials Chemistry A 7, no. 3 (2019): 1138–48. http://dx.doi.org/10.1039/c8ta10468a.

Повний текст джерела
Анотація:
The 3D ordered macroporous structure made of FeS quantum dots homogeneously embedded in a 3D inverse opal-structured carbon matrix was designed for sodium ion capacitors with high energy/power densities.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fang, Yongjin, Song Lin Zhang, Zhi-Peng Wu, Deyan Luan, and Xiong Wen (David) Lou. "A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers." Science Advances 7, no. 21 (2021): eabg3626. http://dx.doi.org/10.1126/sciadv.abg3626.

Повний текст джерела
Анотація:
Lithium metal has been considered as an ideal anode candidate for future high energy density lithium batteries. Herein, we develop a three-dimensional (3D) hybrid host consisting of Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers (denoted as Ag@CMFs) with selective nucleation and targeted deposition of Li. The 3D macroporous framework can inhibit the formation of dendritic Li by capturing metallic Li in the matrix as well as reducing local current density, the lithiophilic nitrogen-doped carbons act as homogeneous nucleation sites owing to the small nucleation barrier, and th
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xia, Wei, Michelle A. Hunter, Jiayu Wang, et al. "Highly ordered macroporous dual-element-doped carbon from metal–organic frameworks for catalyzing oxygen reduction." Chemical Science 11, no. 35 (2020): 9584–92. http://dx.doi.org/10.1039/d0sc02518f.

Повний текст джерела
Анотація:
Multiple heteroatoms-doped carbon with 3D ordered macroporous structures, which showing outstanding catalytic activity for oxygen reduction, was prepared by carbonization of double-solvent-induced MOF/polystyrene sphere accompanied with post-doping.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Zuocheng, Qingfeng Yan, Fabing Su, and X. S. Zhao. "Replicating novel carbon nanostructures with 3D macroporous silica template." Journal of Materials Chemistry 15, no. 26 (2005): 2569. http://dx.doi.org/10.1039/b503691g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ozden, Sehmus, Tharangattu N. Narayanan, Chandra S. Tiwary, et al. "3D Macroporous Solids from Chemically Cross-linked Carbon Nanotubes." Small 11, no. 6 (2014): 688–93. http://dx.doi.org/10.1002/smll.201402127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tonanon, Nattaporn, Adisak Siyasukh, Yunyong Wareenin, et al. "3D interconnected macroporous carbon monoliths prepared by ultrasonic irradiation." Carbon 43, no. 13 (2005): 2808–11. http://dx.doi.org/10.1016/j.carbon.2005.05.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaneti, Yusuf Valentino, Ni Luh Wulan Septiani, Indra Saptiama, et al. "Self-sacrificial templated synthesis of a three-dimensional hierarchical macroporous honeycomb-like ZnO/ZnCo2O4 hybrid for carbon monoxide sensing." Journal of Materials Chemistry A 7, no. 7 (2019): 3415–25. http://dx.doi.org/10.1039/c8ta11380g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wu, Rui, Xiaoju Wan, Jianghai Deng, et al. "NaCl protected synthesis of 3D hierarchical metal-free porous nitrogen-doped carbon catalysts for the oxygen reduction reaction in acidic electrolyte." Chemical Communications 55, no. 61 (2019): 9023–26. http://dx.doi.org/10.1039/c9cc02986a.

Повний текст джерела
Анотація:
A high-performance 3D hierarchical porous metal-free N-doped carbon catalyst for oxygen reduction reaction in acidic medium was synthesized with ZnO as a mesoporous template and NaCl as both a macroporous template and a structure protective agent.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fang, Zhiwei, Desiree Fernandez, Nana Wang, Zhongchao Bai, and Guihua Yu. "Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation." Science China Chemistry 63, no. 11 (2020): 1570–77. http://dx.doi.org/10.1007/s11426-020-9740-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Balgis, Ratna, W. Widiyastuti, Takashi Ogi, and Kikuo Okuyama. "Enhanced Electrocatalytic Activity of Pt/3D Hierarchical Bimodal Macroporous Carbon Nanospheres." ACS Applied Materials & Interfaces 9, no. 28 (2017): 23792–99. http://dx.doi.org/10.1021/acsami.7b05873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Li, Mian, Tingting Liu, Xiangjie Bo, Ming Zhou, and Liping Guo. "A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting." Journal of Materials Chemistry A 5, no. 11 (2017): 5413–25. http://dx.doi.org/10.1039/c6ta09976a.

Повний текст джерела
Анотація:
A novel three-dimensional hierarchically meso/macroporous flower-like architecture of ultra-thin N-doped carbon nanosheets with fine FeCo@NC core–shell units dispersed on their surfaces can efficiently catalyze water splitting.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lu, Xuesong, Lifeng Chen, Negar Amini, Shoufeng Yang, Julian R. G. Evans, and Zheng Xiao Guo. "Novel methods to fabricate macroporous 3D carbon scaffolds and ordered surface mesopores on carbon filaments." Journal of Porous Materials 19, no. 5 (2011): 529–36. http://dx.doi.org/10.1007/s10934-011-9501-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yang, Yan, Lei Wang, Cong Suo, and Yining Liu. "Macroporous C@MoS2 composite as anodes for high-performance sodium-ion batteries." RSC Advances 15, no. 26 (2025): 21051–60. https://doi.org/10.1039/d5ra01240f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lu, Guilong, Xin Wang, Janis Timoshenko, et al. "A 3D Macroporous Carbon NiCu Single-Atom Catalyst for High Current Density CO2 Electroreduction." Advanced functional materials 35 (November 10, 2024): 2419075. https://doi.org/10.1002/adfm.202419075.

Повний текст джерела
Анотація:
Transition metal and nitrogen co-decorated carbon materials are promising platforms for CO<sub>2</sub> electroreduction. A hard-template 2-step pyrolysis method is proposed for the fabrication of highly dispersed Ni and Cu atomic active sites on a 3D macroporous carbon matrix. The pyrrolic N-type Ni&minus;N<sub>x</sub> sites serve as dominant active sites toward selective CO<sub>2</sub> electroreduction to CO. The incorporation of Cu alters the distribution of N species and simultaneously optimizes the electronic state and geometric structure of the Ni&minus;N<sub>x</sub> moiety, thereby impro
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Islam, Monsur, Peter G. Weidler, Dario Mager, Jan G. Korvink, and Rodrigo Martinez-Duarte. "Comparing Carbon Origami from Polyaramid and Cellulose Sheets." Micromachines 13, no. 4 (2022): 503. http://dx.doi.org/10.3390/mi13040503.

Повний текст джерела
Анотація:
Carbon origami enables the fabrication of lightweight and mechanically stiff 3D complex architectures of carbonaceous materials, which have a high potential to impact a wide range of applications positively. The precursor materials and their inherent microstructure play a crucial role in determining the properties of carbon origami structures. Here, non-porous polyaramid Nomex sheets and macroporous fibril cellulose sheets are explored as the precursor sheets for studying the effect of precursor nature and microstructure on the material and structural properties of the carbon origami structure
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Dong, Xiaochen, Xuewan Wang, Lianhui Wang, et al. "3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing." ACS Applied Materials & Interfaces 4, no. 6 (2012): 3129–33. http://dx.doi.org/10.1021/am300459m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wang, Zhiyong, Fan Li, Nicholas S. Ergang, and Andreas Stein. "Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition." Carbon 46, no. 13 (2008): 1702–10. http://dx.doi.org/10.1016/j.carbon.2008.07.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Chen, Jiaqin, Mei Ming, Caili Xu, et al. "Nanosized Iron Oxide Uniformly Distributed on 3D Carbon Nanosheets: Efficient Adsorbent for Methylene Blue." Applied Sciences 9, no. 14 (2019): 2898. http://dx.doi.org/10.3390/app9142898.

Повний текст джерела
Анотація:
Magnetic carbon materials as adsorbents for dye removing have attracted increasing attention because of their magnetic separation feature. However, the immobilization of large magnetic particles on a carbon matrix greatly decreases the available sites for adsorption, resulting in a low adsorption capacity. The synthesis of magnetic carbon materials as adsorbents for dye adsorption with high adsorption capacity remains challenging. Herein, porous carbon (PC) was firstly synthesized through the calcination of macroporous acrylic type cation exchange resin. The as-prepared PC was applied as a mat
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Han, Seong-Hyun, Ki Won Moon, Yun Jong Lee, and Gi-Ja Lee. "Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode." Chemosensors 11, no. 3 (2023): 185. http://dx.doi.org/10.3390/chemosensors11030185.

Повний текст джерела
Анотація:
Accurate and effective diagnosis and individualized management of gout can be potentially achieved by detecting uric acid (UA) and xanthine (XT) simultaneously using an easy-to-use method. Herein, we report simultaneous detection of UA and XT using a 3-dimensional (3D) macroporous gold nanoparticle-incorporated reduced graphene oxide–carbon nanotube nanocomposite (GNP/rGO-CNT). The GNP/rGO-CNT was simply prepared on a glassy carbon electrode (GCE) by one-step electrochemical deposition/co-reduction. It displayed highly sensitive and selective responses to UA and XT, showing excellent stability
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Aghelinejad, Mohammadmehdi, and Siu Leung. "Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers." Materials 11, no. 9 (2018): 1757. http://dx.doi.org/10.3390/ma11091757.

Повний текст джерела
Анотація:
A facile processing strategy to fabricate thermoelectric (TE) polymer nanocomposite foams with non-conducting polymers is reported in this study. Multilayered networks of graphene nanoplatelets (GnPs) and multi-walled carbon nanotubes (MWCNTs) are deposited on macroporous polyvinylidene fluoride (PVDF) foam templates using a layer-by-layer (LBL) assembly technique. The open cellular structures of foam templates provide a platform to form segregated 3D networks consisting of one-dimensional (1D) and/or two-dimensional (2D) carbon nanoparticles. Hybrid nanostructures of GnP and MWCNT networks sy
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hu, Xiang, Junxiang Chen, Guang Zeng, et al. "Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries." Journal of Materials Chemistry A 5, no. 45 (2017): 23460–70. http://dx.doi.org/10.1039/c7ta08169c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Hanbo, Ziqi Zhang, Yiduo Li, et al. "Facile Fabrication of N-doped Carbon Derived from Kiwi Fruit Peel for Advanced Supercapacitor." Academic Journal of Science and Technology 4, no. 2 (2023): 78–82. http://dx.doi.org/10.54097/ajst.v4i2.3974.

Повний текст джерела
Анотація:
As a potential material, biomass material has become a hot spot for energy storage equipment because of its enhanced properties and environmental-friendly features. Waste kiwi fruit peel is a kind of biomass material with a natural macroporous structure. After carbonization, acid pickling and activation, the kiwi fruit peel carbon (KFPC) with a 3D porous structure composed of macropores, mesopores and micropores on its surface and inner channels, respectively. The morphology and structure of the KFPC are studied by scanning electron microscopy (SEM). The electrochemicial properties were analyz
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chen, Haoran, Riyuan Wang, Weiming Meng, et al. "Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation." Nanomaterials 11, no. 11 (2021): 2866. http://dx.doi.org/10.3390/nano11112866.

Повний текст джерела
Анотація:
A superhydrophobic macroporous material composed of hollow hemispherical MXene (HSMX) was synthesized by the thermal annealing of MXene-wrapped cationic polystyrene spheres (CPS@MXene). Notably, the spherical MXene shells exhibited highly efficient catalysis of the carbonization of CPS into carbon nanoparticles. Their insertion into the interlayer of MXene increased the d-spacing and created hollow hemispheres. The as-prepared HSMX with nanoscale walls had a lower packing density than MXene, but higher porosity, total pore volume, and total pore area. Moreover, the stacking of hollow hemispher
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Han, Xiao, Shitai Liu, Luolin Shi, et al. "ZIF-derived wrinkled Co3O4 polyhedra supported on 3D macroporous carbon sponge for supercapacitor electrode." Ceramics International 45, no. 12 (2019): 14634–41. http://dx.doi.org/10.1016/j.ceramint.2019.04.182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ye, Jinmei, Jie Wen, Dongdong Zhao, et al. "Macroporous 3D carbon-nitrogen (CN) confined MoOx catalyst for enhanced oxidative desulfurization of dibenzothiophene." Chinese Chemical Letters 31, no. 10 (2020): 2819–24. http://dx.doi.org/10.1016/j.cclet.2020.08.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Santamaria, Anthony D., Swetha Chandrasekaran, Oliver Philbrick, and Marcus Andre Worsley. "3D Printed Carbon Aerogels for Polymer-Electrolyte Fuel Cells." ECS Transactions 108, no. 7 (2022): 153–63. http://dx.doi.org/10.1149/10807.0153ecst.

Повний текст джерела
Анотація:
Carbon aerogels (CA) are known for ultra-low density, very high surface area, fine porous structure, and excellent electrical conductivity. Recent advances in high resolution 3D printing at LLNL enable the manufacturing of complex structured CA electrodes which have been demonstrated in electrolysis, flow battery, and supercapacitor applications. Polymer-electrolyte fuel cells (PEFC) may be an excellent candidate for these materials/methods as designers seek to optimize membrane-electrode assemblies to achieve higher efficiencies. A major challenge to PEFC design is two-phase flow due to water
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Sun, Boyang. "Advances and Prospects of 3D Semiconductor Nanocomposite Materials for Solar Cells in Renewable Energy." Applied and Computational Engineering 91, no. 1 (2024): 21–26. http://dx.doi.org/10.54254/2755-2721/91/20241107.

Повний текст джерела
Анотація:
With the escalating environmental pressures, the multifaceted characteristics of 3D materials in terms of energy utilization and stability have attracted widespread attention. This paper employs literature research, surveys, and descriptive research methods to discuss how 3D composite nanomaterials promote further innovation in new solar cells and their application in practical situations. The article mainly focuses on 2D/3D perovskite solar cells, multi-walled carbon nanomaterials, and three-dimensional ordered macroporous materials (3DOM) and deeply explores their roles in various battery fr
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Santamaria, Anthony D., Swetha Chandrasekaran, Oliver Philbrick, and Marcus Andre Worsley. "3D Printed Carbon Aerogels for Polymer-Electrolyte Fuel Cells." ECS Meeting Abstracts MA2022-01, no. 35 (2022): 1535. http://dx.doi.org/10.1149/ma2022-01351535mtgabs.

Повний текст джерела
Анотація:
Carbon aerogels (CA) are known for ultra-low density, very high surface area, fine porous structure, and excellent electrical conductivity. Recent advances in high resolution 3D printing at LLNL enable the manufacturing of complex CA structures which have been demonstrated for electrolysis, flow battery, and supercapacitor applications. Polymer-electrolyte fuel cells (PEFC) may be an excellent candidate for these materials/methods as designers seek to optimize membrane-electrode assemblies to achieve higher power densities. A major challenge to PEFC design is two-phase flow due to water produc
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Xue, Pan, Nana Wang, Yunxiao Wang, et al. "Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries." Carbon 134 (August 2018): 222–31. http://dx.doi.org/10.1016/j.carbon.2018.04.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mishra, Saswat, Prajakta Katti, S. Kumar, and Suryasarathi Bose. "Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation." Chemical Engineering Journal 357 (February 2019): 384–94. http://dx.doi.org/10.1016/j.cej.2018.09.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

You, Shijie, Ming Ma, Wei Wang, et al. "3D Macroporous Nitrogen-Enriched Graphitic Carbon Scaffold for Efficient Bioelectricity Generation in Microbial Fuel Cells." Advanced Energy Materials 7, no. 4 (2016): 1601364. http://dx.doi.org/10.1002/aenm.201601364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ortlieb, Niklas, Taisiia Berestok, Patrick Elsäßer, Sven Küspert, Jonas Mutscher, and Anna Fischer. "Tailored 3D Porous N-Doped Carbon Nanospheres for Bottom-up Electrode Design - Independent Pore and Particle Size Control for the Use in Model Electrodes." ECS Meeting Abstracts MA2024-02, no. 11 (2024): 1517. https://doi.org/10.1149/ma2024-02111517mtgabs.

Повний текст джерела
Анотація:
Design of porous carbon-based electrode materials and derived porous electrode structures is crucial for the performance of electrochemical energy storage and conversion devices. In that context carbon-based electrode material building blocks with well-defined properties are desired. Such properties include controlled morphology (preferably spherical), particle size, and intra-particle porosity along with controlled composition, surface chemistry, and processability. These factors influence the particle arrangement and electrode structure during processing, as well as electrolyte interaction,
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhang, Lijuan, Weihua He, Junchuan Yang, et al. "Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells." Biosensors and Bioelectronics 122 (December 2018): 217–23. http://dx.doi.org/10.1016/j.bios.2018.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sun, Xinxin, Zhiyuan Wang, Haohui Zhang, Kaize Si, Xiaomei Wang, and Xu Zhang. "Honeycomb-like 3D ordered macroporous SiO /C nanoarchitectures with carbon coating for high-performance lithium storage." Journal of Colloid and Interface Science 651 (December 2023): 394–403. http://dx.doi.org/10.1016/j.jcis.2023.07.199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhang, Chengwei, Zheng Zhang, Fuxing Yin, et al. "3D Ordered Macroporous Carbon Encapsulated ZnO Nanoparticles as a High-Performance Anode for Lithium-Ion Batteries." ChemElectroChem 4, no. 9 (2017): 2359–65. http://dx.doi.org/10.1002/celc.201700239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chen, Shaoqin, Siyuan Fang, Aniqa Ibnat Lim, Jiming Bao, and Yun Hang Hu. "3D meso/macroporous carbon from MgO-templated pyrolysis of waste plastic as an efficient electrode for supercapacitors." Chemosphere 322 (May 2023): 138174. http://dx.doi.org/10.1016/j.chemosphere.2023.138174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Yuanlin, Nana Wang, Xunhua Zhao, et al. "Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries." Journal of Materials Chemistry A 8, no. 5 (2020): 2843–50. http://dx.doi.org/10.1039/c9ta13377a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhao, Qinfu, Qiang Zhang, Yang Yue, et al. "Investigation of 3D ordered macroporous carbon with different polymer coatings and their application as an oral vaccine carrier." International Journal of Pharmaceutics 487, no. 1-2 (2015): 234–41. http://dx.doi.org/10.1016/j.ijpharm.2015.04.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Han, Liu, Yun-lei Zhong, Yang Su, et al. "Nanocomposites based on 3D macroporous biomass carbon with SnS2 nanosheets hierarchical structure for efficient removal of hexavalent chromium." Chemical Engineering Journal 369 (August 2019): 1138–49. http://dx.doi.org/10.1016/j.cej.2019.03.096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Yang, Soo Young, Jin-Sung Park, Hye Young Koo, and Yun Chan Kang. "Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage." International Journal of Energy Research 2023 (December 1, 2023): 1–23. http://dx.doi.org/10.1155/2023/9881400.

Повний текст джерела
Анотація:
Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhao, Shenlong, Yuchen Li, Huajie Yin, et al. "Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells." Science Advances 1, no. 10 (2015): e1500372. http://dx.doi.org/10.1126/sciadv.1500372.

Повний текст джерела
Анотація:
Microbial fuel cells (MFCs) are able to directly convert about 50 to 90% of energy from oxidation of organic matters in waste to electricity and have great potential application in broad fields such as wastewater treatment. Unfortunately, the power density of the MFCs at present is significantly lower than the theoretical value because of technical limitations including low bacteria loading capacity and difficult electron transfer between the bacteria and the electrode. We reported a three-dimensional (3D) graphene aerogel (GA) decorated with platinum nanoparticles (Pt NPs) as an efficient fre
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Thubsuang, Uthen, Hatsuo Ishida, Sujitra Wongkasemjit, and Thanyalak Chaisuwan. "Self-formation of 3D interconnected macroporous carbon xerogels derived from polybenzoxazine by selective solvent during the sol–gel process." Journal of Materials Science 49, no. 14 (2014): 4946–61. http://dx.doi.org/10.1007/s10853-014-8196-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zhu, S. Y., Y. F. Yuan, P. F. Du, M. Zhu, Y. B. Chen та S. Y. Guo. "α-MnS nanoparticles in-situ anchored in 3D macroporous honeycomb carbon as high-performance anode for Li-ion batteries". Applied Surface Science 616 (квітень 2023): 156619. http://dx.doi.org/10.1016/j.apsusc.2023.156619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zou, Long, Yan Qiao, Shuang Gu, Yunhong Huang, Canyu Zhong, and Zhong-er Long. "Nano-porous Mo 2 C in-situ grafted on macroporous carbon electrode as an efficient 3D hydrogen evolution cathode." Journal of Alloys and Compounds 712 (July 2017): 103–10. http://dx.doi.org/10.1016/j.jallcom.2017.03.237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Yang, Yitao, Dawei Han, Luyuan Yang, et al. "Structural cage effect of 3D ordered meso-macroporous Ni-based catalysts for boosting carbon-resistant dry reforming of methane." Applied Catalysis B: Environment and Energy 376 (November 2025): 125476. https://doi.org/10.1016/j.apcatb.2025.125476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Shen, Qi, Jianjun Ding, Zengsheng Guo, et al. "Dual-responsive electrochemical immunosensor for CYFRA21-1 detection based on Au/Co Co-loaded 3D ordered macroporous carbon interconnected framework." Colloids and Surfaces B: Biointerfaces 242 (October 2024): 114111. http://dx.doi.org/10.1016/j.colsurfb.2024.114111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yang, Chenglong, Weihan Li, Zhenzhong Yang, Lin Gu, and Yan Yu. "Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries." Nano Energy 18 (November 2015): 12–19. http://dx.doi.org/10.1016/j.nanoen.2015.09.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zong, Ze, Penggang Ren, Zhengzheng Guo, et al. "Synergistic effect of 2D TiC and 1D CNT towards absorption-dominant high-performance electromagnetic interference shielding in 3D macroporous carbon aerogel." Carbon 197 (September 2022): 40–51. http://dx.doi.org/10.1016/j.carbon.2022.06.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Tongrui, Mengjun Liu, Qianqian Zhang, et al. "Sensitive determination of chlorogenic acid in pharmaceutical products based on the decoration of 3D macroporous carbon with Au nanoparticles via polyoxometalates." Analyst 142, no. 14 (2017): 2603–9. http://dx.doi.org/10.1039/c7an00493a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!