Добірка наукової літератури з теми "A thermal capacity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "A thermal capacity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "A thermal capacity"

1

Bennett, A. F. "Thermal dependence of locomotor capacity." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 259, no. 2 (1990): R253—R258. http://dx.doi.org/10.1152/ajpregu.1990.259.2.r253.

Повний текст джерела
Анотація:
The thermal dependence of locomotor performance capacity, particularly speed and endurance, in vertebrate ectotherms is examined. Most studies have found an optimal speed for performance at relatively high body temperatures, close to upper lethal limits. These performance capacities decrease markedly at low body temperatures and may be compensated by increments in aggressive or evasive behaviors. Relative ranking of performance is maintained among individuals across body temperatures. Acclimation of performance capacities is generally incomplete or entirely absent: most animals compensate loco
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khoshnevisan, Davar, and Yimin Xiao. "Brownian motion and thermal capacity." Annals of Probability 43, no. 1 (2015): 405–34. http://dx.doi.org/10.1214/14-aop910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GHUMAN, B. S., and R. LAL. "THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND THERMAL CAPACITY OF SOME NIGERIAN SOILS." Soil Science 139, no. 1 (1985): 74–80. http://dx.doi.org/10.1097/00010694-198501000-00011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Papa, Touty Traore, Katim Toure Imam, Monzon Alassane Samake Papa, Abdoul Aziz Cisse Elhadji, and Diagne Issa. "Determination of the Characteristics of Insulation and Thermal Inertia of a Flat Wall from the Thermal-Electrical Analogy in Dynamic Frequency Regim." Journal of Scientific and Engineering Research 10, no. 1 (2023): 23–29. https://doi.org/10.5281/zenodo.10452364.

Повний текст джерела
Анотація:
<strong>Abstract</strong> In this paper we study, a thermal-electrical analogy for the determination of the characteristics of isolation and inertia of a plane of wall. The thermal transmittance and the phase shift were determined respectively from the shunt and series resistors, and the Bode diagram of the phase of the thermal impedance under the influence of the heat exchange coefficient. The resistive character of the material was shown from the Bode diagram of the thermal impedance and finally the determination of the specific heat was proposed from the Bode diagram of the heat capacity.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Popa, Karin, Ondrej Beneš, Dragoş Staicu, et al. "Heat capacity, thermal expansion, and thermal diffusivity of NaUO2BO3." Journal of Thermal Analysis and Calorimetry 132, no. 1 (2017): 343–51. http://dx.doi.org/10.1007/s10973-017-6923-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ročková, Kateřina, Lucie Rešetarová, and Luboš Hes. "Absorbability and Thermal Capacity of Towels." Advanced Materials Research 740 (August 2013): 659–64. http://dx.doi.org/10.4028/www.scientific.net/amr.740.659.

Повний текст джерела
Анотація:
Presented article deals with absorbability and thermal capacity measuring for few basic types of towels. Absorbability is the material ability to absorb water. That is especially for towels the most important property. The thermal capacity behaviour according to the increasing moisture degree was investigated by the Alambeta device. Thermal capacity is the parameter, which characterizes the thermal touch. A task of laboratory experiments was to determine how much water stayed on human body after an ordinary shower. Furthermore, it was obligatory to set chosen property characteristics by the Al
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feldhoff, Armin. "On the Thermal Capacity of Solids." Entropy 24, no. 4 (2022): 479. http://dx.doi.org/10.3390/e24040479.

Повний текст джерела
Анотація:
The term thermal capacity appears to suggest a storable thermal quantity. However, this claim is not redeemed when thermal capacity is projected onto “heat”, which, like all energy forms, exits only in transit and is not a part of internal energy. The storable thermal quantity is entropy, and entropy capacity is a well-defined physical coefficient which has the advantage of being a susceptibility. The inverse of the entropy capacity relates the response of the system (change of temperature) to a stimulus (change of entropy) such as the fluid level responses to a change in amount of fluid conta
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cabezon, Francisco A., Allan P. Schinckel, and Robert M. Stwalley III. "Thermal Capacity of Hog-Cooling Pad." Applied Engineering in Agriculture 33, no. 6 (2017): 891–99. http://dx.doi.org/10.13031/aea.12333.

Повний текст джерела
Анотація:
Abstract. Modern hog farrowing operations have reached a state in which the environmental conditions necessary for piglets are vastly different than those required by sows. A hog-cooling pad has been developed by Purdue University researchers to alleviate thermally-induced stress in the sow. Understanding the basic thermal properties of the device is critical to the development of the technology, and this article documents the experimentation performed on the unit to measure some of those characteristics. A preliminary experimental investigation into the thermal response of the device with no
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Davies, M. G. "Wall thermal capacity and transfer coefficients." Building and Environment 39, no. 1 (2004): 109–12. http://dx.doi.org/10.1016/s0360-1323(03)00136-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Einum, Sigurd, Irja Ratikainen, Jonathan Wright, et al. "How to quantify thermal acclimation capacity?" Global Change Biology 25, no. 6 (2019): 1893–94. http://dx.doi.org/10.1111/gcb.14598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "A thermal capacity"

1

Thoms, Matthew W. "Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74946.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 86-88).<br>In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced and electricity is generated. Unfortunately, many high temperature HTFs have poor thermal properties that inhibit this process, including specific heat capacities which are half that of water.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Prodjinonto, Vincent. "Contribution à l'économie d'énergie dans le bâtiment : mesure de capacité de stockage dynamique d'une paroi." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14449/document.

Повний текст джерела
Анотація:
L’économie d’énergie dans le bâtiment est devenue une question préoccupante d’envergure internationale. Le secteur du bâtiment en effet, est l’un des plus énergétivores avec par exemple plus de 43% du total d’énergie produite en France, mais aussi l’un des plus polluants avec environs, 23% des émissions de gaz à effet de serre. Avec l’accroissement des ménages, et la demande par conséquent d’énergie, les problèmes ci-dessus évoqués vont décupler et devenir rapidement ingérables les années à venir, si aucune mesure n’est prise. Ainsi, pour faire face à la situation, plusieurs stratégies sont mi
Стилі APA, Harvard, Vancouver, ISO та ін.
3

AYALA, GUSTAVO ALBERTO AMARAL. "ALLOCATION OF FIRM CAPACITY RIGHTS AMONG THERMAL PLANTS: A GAME THEORETICAL APPROACH." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12366@1.

Повний текст джерела
Анотація:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>O objetivo desta dissertação é analisar a aplicação de metodologias de alocação de capacidade firme de usinas termelétricas através da teoria dos jogos cooperativos e suas conseqüências na cooperação entre os agentes. Mostra-se que não existe uma maneira ótima, única, de se fazer esta repartição, mas existem critérios para verificar se uma metodologia de repartição específica apresenta algum aspecto inadequado. Um desses critérios é a justiça. Mostra-se que este sentido de justiça equivale a pertencer ao chamado núcleo de um jogo coo
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guo, Baojian Overfelt Ruel A. "Measurements of the thermal expansion and heat capacity of metals by electromagnetic levitation." Auburn, Ala., 2006. http://hdl.handle.net/10415/1328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Labus, Jerko. "Modelling of small capacity absorption chillers driven by solar thermal energy or waste heat." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/51878.

Повний текст джерела
Анотація:
Aquesta recerca es centra en el desenvolupament de models en règim estacionari de màquines d’absorció de petita potència, els quals estan basats en dades altament fiables obtingudes en un banc d’assajos d’última tecnologia. Aquests models podran ser utilitzats en aplicacions de simulació, o bé per a desenvolupar estratègies de control de supervisió dels sistemes d’aire condicionat amb màquines d’absorció. Per tant, l’objectiu principal d’aquesta investigació és desenvolupar i descriure una metodologia comprensible i que englobi el procés sencer: tant els assajos, com la modelització, com també
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Underwood, C. P. "An investigation into the dynamic thermal modelling and capacity control of the absorption cycle heat pump." Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eriksson, Robin. "Heat storages in Swedish district heating systems : An analysis of the installed thermal energy storage capacity." Thesis, Högskolan i Halmstad, Energivetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-31143.

Повний текст джерела
Анотація:
District heating is the most common source of heating in Sweden and has played a crucial part in the country’s substantial reductions of carbon dioxide emissions. This recycling technology is ideal in order to use thermal energy as efficiently as possible and makes the goals set for a sustainable future more achievable. The future potential of this technology is therefore huge. Today, a lot of the district heating systems have installed heat storages in order to improve the systems reliability and performance. These heat storages have the potential to be utilized even further in the future by
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braun, Marle. "Total antioxidant capacity of stewed tomato and onion flavoured with parsley: effect of thermal household processing." Thesis, Cape Peninsula University of Technology, 2006. http://hdl.handle.net/20.500.11838/766.

Повний текст джерела
Анотація:
Thesis (MTech (Consumer Sciences: Food and Nutrition))--Cape Peninsula University of Technology, 2006<br>Fruit and vegetables are the major antioxidant contributors to the diet Antioxidants assist in the prevention of oxidative damage in the body and may as a result prevent the causation of degenerative diseases. Thermal household processing plays an integral part in South African consumers' lives, as most fruit and vegetables consumed are processed at home. Consumers' perceptions that food processing causes nutrient losses, especially of vitamin C, have been corroborated by studies
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eager, Daniel. "Dynamic modelling of generation capacity investment in electricity markets with high wind penetration." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6264.

Повний текст джерела
Анотація:
The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much debate. Like many capital intensive industries, generation investment suffers from long lead and construction times, lumpiness of capacity change and high uncertainty. As a result, the ‘boom-and-bust’ investment cycle phenomenon, characterised by overcapacity and low prices, followed by power shortages and high prices, is a prominent feature in the debate. Modelling the dynamics o
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Bo. "High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century." Doctoral thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3781.

Повний текст джерела
Анотація:
<p>Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.</p><p>Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand,
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "A thermal capacity"

1

S, Hemingway Bruce, and Geological Survey (U.S.), eds. Estimating heat capacity and heat content of rocks. U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Barron, T. H. K. Heat capacity and thermal expansion at low temperatures. Kluwer Academic/Plenum, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barron, T. H. K., and G. K. White. Heat Capacity and Thermal Expansion at Low Temperatures. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4695-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barron, T. H. K. Heat Capacity and Thermal Expansion at Low Temperatures. Springer US, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hemingway, Bruce S. Heat capacity and thermodynamic properties of equilibrium sulfur to the temperature 388.36 K, and the heat capacity of Calorimetry Conference copper. U.S. Dept. of the Interior, Geological Survey, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hemingway, Bruce S. Heat capacity and thermodynamic properties for coesite and jadeite. U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

C, Price John, ed. Interpretation of thermal infrared data: The heat capacity mapping mission. Harwood, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hemingway, Bruce S. Revised heat capacity values for topaz and staurolite based upon a better analysis of the water content of the samples. U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abdulagatov, I. M., A. I. Abdulagatov, and Gennadiĭ Vladimirovich Stepanov. Isochoric heat capacity of fluids and fluid mixtures in the critical and supercritical regions: Experiment and theory. Nova Science Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yi, Chʻun-u. Yongnyang kabyŏnhyŏng chiyŏrwŏn tajung konggan naengnanbang sisŭtʻem =: The development of capacity variable type geo-thermal source multi space cooling & heating system. Chisik Kyŏngjebu, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "A thermal capacity"

1

Sprackling, Michael. "Heat capacity." In Thermal physics. Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gooch, Jan W. "Thermal Capacity." In Encyclopedic Dictionary of Polymers. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wojtkowiak, Janusz. "Lumped Thermal Capacity Model." In Encyclopedia of Thermal Stresses. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-2739-7_393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kobranova, V. N. "Thermal Conductivity, Thermal (or Heat) Capacity, Thermal Diffusivity". У Petrophysics / ПЕТРОФИЗИКА. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-09244-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ventura, Guglielmo, and Mauro Perfetti. "Heat Capacity." In Thermal Properties of Solids at Room and Cryogenic Temperatures. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8969-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gooch, Jan W. "Thermal Capacity or Water Equivalent." In Encyclopedic Dictionary of Polymers. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rössler, U. "ZnSe: thermal conductivity, heat capacity." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_98.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Watson, Neil. "Polar sets and thermal capacity." In Mathematical Surveys and Monographs. American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/182/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rössler, U. "ZnO: enthalpy, heat capacity, thermal conductivity." In New Data and Updates for several Semiconductors with Chalcopyrite Structure, for several II-VI Compounds and diluted magnetic IV-VI Compounds. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28531-8_74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dowding, K. J., J. V. Beck, and L. Eilers. "Method for Measuring the Orthotropic Thermal Conductivity and Volumetric Heat Capacity in a Carbon-Carbon Composite." In Thermal Conductivity 23. CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "A thermal capacity"

1

Bihani, Raghav, Parnab Saha, Xu Tan, Mahyar Abedi, and André Bénard. "COMPARATIVE ANALYSIS OF HUMIDIFICATION CAPACITY WITH DIFFERENT PACKING MATERIALS IN CROSSFLOW HUMIDIFICATION-DEHUMIDIFICATION SYSTEMS." In 10th Thermal and Fluids Engineering Conference (TFEC). Begellhouse, 2025. https://doi.org/10.1615/tfec2025.the.056059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cao, Wenbin, Mingkai Wang, Bo Han, Qi Chai, Hongtao Li, and Ying Liu. "Low Carbon Scheduling of Thermal Power Unit Thermal Storage Capacity Based on Particle Swarm Optimization." In 2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, 2024. http://dx.doi.org/10.1109/ispds62779.2024.10667614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reynolds, Jason, Jhonathan Rosales, Martin Volz, et al. "Specific Heat Capacity Measurement of Bi-Carbide Fuels for Nuclear Thermal Propulsion." In Nuclear and Emerging Technologies for Space (NETS 2024). American Nuclear Society, 2024. http://dx.doi.org/10.13182/nets24-43753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alekseev, Aleksey K. "Thermal protection memory capacity." In 3rd International Conference on Intelligent Materials, edited by Pierre F. Gobin and Jacques Tatibouet. SPIE, 1996. http://dx.doi.org/10.1117/12.237081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meng Chee, Yeow, Tuvi Etzion, Kees A. Schouhamer Immink, et al. "Thermal-Aware Channel Capacity." In 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023. http://dx.doi.org/10.1109/isit54713.2023.10206738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Zhang, Liao Jing, Wen Ming, Liu Hang, Tang Liang, and Zhang Jiamin. "Thermal Power Capacity Price Seletction Mechanism." In 2021 11th International Conference on Power and Energy Systems (ICPES). IEEE, 2021. http://dx.doi.org/10.1109/icpes53652.2021.9683892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moraes de Lima, Caio Jean, and George Marinho. "VOLUMETRIC HEAT CAPACITY ANALYSIS OF SUGARCANE BAGASSE POWDER." In Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2018. http://dx.doi.org/10.26678/abcm.encit2018.cit18-0566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alkharabsheh, Sami, Bahgat Sammakia, Saurabh Shrivastava, and Roger Schmidt. "Implementing rack thermal capacity in a room level CFD model of a data center." In 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiříčková, Adéla, Filip Antončík, Michal Lojka, David Sedmidubský, and Ondřej Jankovský. "Heat capacity and thermal stability of YBa2Cu3O7." In THERMOPHYSICS 2018: 23rd International Meeting of Thermophysics 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5047612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Antončík, Filip, Adéla Jiříčková, David Sedmidubský, Tomáš Hlásek, Michal Lojka, and Ondřej Jankovský. "Heat capacity and thermal stability of Y2BaCuO5." In THERMOPHYSICS 2019: 24th International Meeting of Thermophysics and 20th Conference REFRA. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "A thermal capacity"

1

Hrubesh, L. W., P. R. Coronado, and J. F. Poco. Enhanced thermal capacity aerogels summary report for FY 1993. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/142544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cooke, Alan L., David M. Anderson, David W. Winiarski, Robert T. Carmichael, Ebony T. Mayhorn, and Andrew R. Fisher. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1177303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amama, Placidus B., Jonathan E. Spowart, Andrey A. Voevodin, and Timothy S. Fisher. Agile Thermal Management STT-RX, Modified Magnesium Hydride and Calcium Borohydride for High-Capacity Thermal Energy Storage (PREPRINT). Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada554163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Levinson, Ronnen, Delp Wm. Woody, Darryl Dickerhoff, and Mark Modera. Effects of air infiltration on the effective thermal conductivity of internal fiberglass insulation and on the delivery of thermal capacity via ducts. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/764330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brodsky, N. S., M. Riggins, J. Connolly, and P. Ricci. Thermal expansion, thermal conductivity, and heat capacity measurements for boreholes UE25 NRG-4, UE25 NRG-5, USW NRG-6, and USW NRG-7/7A. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/541812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pradhan, Nawa Raj, Charles Wayne Downer, and Sergey Marchenko. User guidelines on catchment hydrological modeling with soil thermal dynamics in Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/48331.

Повний текст джерела
Анотація:
Climate warming is expected to degrade permafrost in many regions of the world. Degradation of permafrost has the potential to affect soil thermal, hydrological, and vegetation regimes. Projections of long-term effects of climate warming on high-latitude ecosystems require a coupled representation of soil thermal state and hydrological dynamics. Such a coupled framework was developed to explicitly simulate the soil moisture effects of soil thermal conductivity and heat capacity and its effects on hydrological response. In the coupled framework, the Geophysical Institute Permafrost Laboratory (
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bruce. L51942 Refinement of Cooling Rate Prediction Methods for In-Service Welds. Pipeline Research Council International, Inc. (PRCI), 2003. http://dx.doi.org/10.55274/r0010435.

Повний текст джерела
Анотація:
Welds made onto in-service pipeline are particularly susceptible to hydrogen cracking because of the fast weld cooling rates that tend to result from the ability of the flowing contents to remove heat from the pipe wall. The most commonly used procedures for controlling the risk of hydrogen cracking rely on the use of a sufficiently high heat input level. Two methods currently exist for predicting required heat input levels for welds made onto in-service pipelines: thermal analysis computer modeling and the heat-sink capacity measurement method. The objective of this project was to refine thes
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Witte, Grimley, and Thorson. PR-015-12606-R01 Thermal Irradiance Effects on Ultrasonic Meter Performance at Low Flow Rates. Pipeline Research Council International, Inc. (PRCI), 2013. http://dx.doi.org/10.55274/r0010011.

Повний текст джерела
Анотація:
This study was focused on determining the effects of thermal radiant energy on ultrasonic meter accuracy at flow rates less than 10% of meter capacity. A straight run ultrasonic meter installation consistent with the recommendations of AGA Report Number 9 was assembled, and arrays of heat lamps were mounted above the meter run. The heat lamp arrays were energized in banks in order to simulate different modes of shading of the meter run assembly to determine the influence of solar radiation on flow measurement at low flow rates. Observed flow measurement errors were evaluated by analysis of ult
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Phisalaphong, Muenduen. Development and characterization of activated carbon derived from bacterial cellulose. Chulalongkorn University, 2017. https://doi.org/10.58837/chula.res.2017.66.

Повний текст джерела
Анотація:
Bacterial cellulose (BC) was investigated as a novel material for preparing activated carbons. BC was dried by heating and it was carbonized with a chemical activation process using phosphoric acid (H₃PO₄) as an activating agent at different temperatures (400, 500 and 600 °C). The properties of the activated carbons were characterized such as chemical property, structure, pore size, thermal property by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), N₂ -physisorption (BET), scanning electron microscopy (SEM) , thermal gravimetric (TGA). The obtained BC activated carbo
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alexander, Serena, Bo Yang, Owen Hussey, and Derek Hicks. Examining the Externalities of Highway Capacity Expansions in California: An Analysis of Land Use and Land Cover (LULC) Using Remote Sensing Technology. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2251.

Повний текст джерела
Анотація:
There are over 590,000 bridges dispersed across the roadway network that stretches across the United States alone. Each bridge with a length of 20 feet or greater must be inspected at least once every 24 months, according to the Federal Highway Act (FHWA) of 1968. This research developed an artificial intelligence (AI)-based framework for bridge and road inspection using drones with multiple sensors collecting capabilities. It is not sufficient to conduct inspections of bridges and roads using cameras alone, so the research team utilized an infrared (IR) camera along with a high-resolution opt
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!