Добірка наукової літератури з теми "AA2524-T3"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "AA2524-T3".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "AA2524-T3":

1

Queiroz, Fernanda Martins, Maysa Terada, Aline F. Santos Bugarin, Hercílio Gomes de de Melo, and Isolda Costa. "Comparison of Corrosion Resistance of the AA2524-T3 and the AA2024-T3." Metals 11, no. 6 (June 19, 2021): 980. http://dx.doi.org/10.3390/met11060980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The 2XXX Al alloys are characterized by their superior mechanical properties resulting from alloying elements and precipitation hardening treatments. The AA2524-T3 alloy was developed to replace the AA2024-T3 alloy in the aerospace industry. However, both alloys present many intermetallic particles (IMCs) in their microstructure, and this is the main reason for their high susceptibility to localized corrosion (such as pitting and stress corrosion cracking). Despite the similarities between these alloys (e.g., chemical composition and type of intermetallics) the literature comparing their properties is scarce and focuses mainly on their mechanical properties, not their corrosion resistances. In this investigation, the corrosion resistance of the AA2524-T3 alloy was compared to the AA2024-T3 alloy. The microstructure of both alloys was analyzed by Scanning Electron Microscopy before and after immersion in the test electrolyte, and the number and area fraction of intermetallics of each alloy was determined. The corrosion resistance of both alloys was monitored as a function of exposure time by electrochemical impedance spectroscopy and the results were fitted using electrical equivalent circuits. The AA2524-T3 alloy presented not only higher impedance values but also less corroded areas than the AA2024-T3 alloy.
2

Fu, Ruidong, Huan Xu, Guohong Luan, Chunlin Dong, Fucheng Zhang, and Guang Li. "Top surface microstructure of friction-stir welded AA2524-T3 aluminum alloy joints." Materials Characterization 65 (March 2012): 48–54. http://dx.doi.org/10.1016/j.matchar.2011.12.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Long, Anlin, Min Wan, Wenping Wang, Xiangdong Wu, Xuexi Cui, and Chunping Fang. "Electromagnetic superposed forming of large-scale one-dimensional curved AA2524-T3 sheet specimen." International Journal of Advanced Manufacturing Technology 92, no. 1-4 (February 15, 2017): 25–38. http://dx.doi.org/10.1007/s00170-017-0127-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Costenaro, Hellen, Fernanda Martins Queiroz, Maysa Terada, Marie Georges Olivier, Isolda Costa, and Hercílio G. De Melo. "Corrosion Protection of AA2524-T3 Anodized in Tartaric-Sulfuric Acid Bath and Protected with Hybrid Sol-Gel Coating." Key Engineering Materials 710 (September 2016): 210–15. http://dx.doi.org/10.4028/www.scientific.net/kem.710.210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
2xxx Al alloys are particularly sensitive to localized corrosion in chloride environments and in order to maintain their integrity, minimize maintenance needs and repairs, and to maximize component life, protective treatments are required.Anodizing is an electrochemical process based on the growth of the Al oxide layer by applying anodic potentials. One of the alternatives is tartaric/sulphuric acid (TSA) anodizing, which is environmentally compliant and provides corrosion resistance properties, compatible with the requirements of the aerospace industry with appropriate paint adhesion.In this study, AA2524-T3 specimens were anodized in a tartaric-sulfuric acid bath (TSA) and subsequently protected by application of a hybrid sol–gel coating. The sol–gel coating was prepared using a solution with high water content (58 %v/v) and obtained by the hydrolysis and condensation of tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The corrosion resistance evaluation of both unsealed and coated samples was carried out in a sodium chloride solution by EIS as a function of immersion time. The results were also fitted using electrical equivalent circuits.
5

Shen, Fanghua, Bin Wang, Huiqun Liu, Yong Jiang, Cong Tang, Wenbin Shou, Suping Pan, Yuqiang Chen, and Danqing Yi. "Effects of secondary particle-induced recrystallization on fatigue crack growth in AA2524/Al Cu Mg T3 alloy sheets." Journal of Alloys and Compounds 685 (November 2016): 571–80. http://dx.doi.org/10.1016/j.jallcom.2016.05.317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Terada, Maysa, Fernanda M. Queiroz, Helen Costenaro, Victor H. Ayusso, Marjorie Olivier, Isolda Costa, and Hercílio G. de Melo. "Effect of Cerium Addition to a Hydrothermal Treatment on the Corrosion Protection of the Tartaric-Sulfuric Acid Anodized AA2524-T3." CORROSION 75, no. 9 (September 1, 2019): 1110–17. http://dx.doi.org/10.5006/3063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shen, Fanghua, Bin Wang, Danqing Yi, Huiqun Liu, Cong Tang, and Wenbin Shou. "Effects of heating rate during solid-solution treatment on microstructure and fatigue properties of AA2524 T3 Al–Cu–Mg sheet." Materials & Design 104 (August 2016): 116–25. http://dx.doi.org/10.1016/j.matdes.2016.05.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Moreto, Jéferson Aparecido, Luciana Sgarbi Rossino, Waldek Wladimir Bose Filho, Cláudia Eliana Bruno Marino, Miguel da Conceição Ferreira, Maryna Taryba, and João Carlos Salvador Fernandes. "On the Global and Localised Corrosion Behaviour of the AA2524-T3 Aluminium Alloy Used as Aircraft Fuselage Skin." Materials Research 22, no. 2 (2019). http://dx.doi.org/10.1590/1980-5373-mr-2018-0280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "AA2524-T3":

1

Pereira, Gomes Maurilio. "Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminium alloy 2524-T3." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Une étude a été développée concernant le mécanisme de corrosion du magnésium pur. Ce métal a fait l'objet d'un nombre considérable de travaux et, malgré son ubiquité et son histoire, il reste controversé. Ceci est principalement dû à la présence de l'effet de différence négative (NDE), qui augmente la formation d'hydrogène lorsque le magnésium est polarisé sur le domaine anodique. Une analyse détaillée des spectres d'impédance électrochimique obtenus pour l'électrode de Mg lors de son immersion dans une solution de sulfate de sodium a été réalisée. Un modèle a été proposé qui prend en compte la présence de : (i) d'un mince film d'oxyde (MgO) qui a progressivement recouvert la surface de l'électrode de Mg, (ii) de zones sans film où la dissolution du Mg se produit en deux étapes consécutives, (iii) d'une épaisse couche de produits de corrosion (Mg(OH)2), (iv) d'un intermédiaire adsorbé Mg_ads^+ qui est responsable de la réaction chimique permettant d'expliquer le NDE. A partir des analyses des données d'impédance, différents paramètres ont été extraits tels que l'épaisseur du film d'oxyde mince, la résistivité à l'interface métal/film d'oxyde et à l'interface film d'oxyde/électrolyte, la surface active en fonction du temps d'exposition à l'électrolyte, l'épaisseur de la couche épaisse de Mg(OH)2 et les constantes cinétiques des réactions électrochimiques
A parallel study was developed regarding the corrosion mechanism of pure magnesium. It has been the subject of a considerable amount of work, and despite its ubiquity and history, it remains controversial. This is mainly due to the presence of the negative difference effect (NDE), which increases hydrogen formation when the magnesium is biased on the anodic domain. We was performed a detailed analysis of the electrochemical impedance spectra obtained for the Mg electrode during immersion in a sodium sulfate solution. A model was proposed which took into account the presence of: (i) a thin oxide film (MgO) which progressively covered the Mg electrode surface, (ii) film-free areas where the Mg dissolution occurs in two consecutive steps, (iii) a thick layer of corrosion products (Mg(OH)2), (iv) an adsorbed intermediate Mg_ads^+ which is responsible for the chemical reaction allowing the NDE to be explained. From the impedance data analyses, various parameters were extracted such as the thin oxide film thickness, the resistivity at the metal/oxide film interface and at the oxide film/electrolyte interface, the active surface area as a function of the exposure time to the electrolyte, the thickness of the thick Mg(OH)2 layer and the kinetic constants of the electrochemical reactions

До бібліографії