Добірка наукової літератури з теми "Action-Angle variables"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Action-Angle variables".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Action-Angle variables"

1

Spergel, David N. "Natural Action–Angle Variables." Symposium - International Astronomical Union 127 (1987): 483–84. http://dx.doi.org/10.1017/s0074180900185857.

Повний текст джерела
Анотація:
Since galaxies are collisionless relaxed systems, actions are an extremely useful tool for understanding their dynamics. There are many potential applications of actions: (1) When orbits in an N-body simulation are characterized by their actions, the six dimensional distribution function, can be reduced to a more tractable three dimensional function, f(J). (2) Actions are adiabatic invariants, and thus are useful for studying slowly evolving systems. Binney, May and Ostriker (1986) have applied this technique to study the response of the spheroid to the disc. (3) the spectral decomposition of
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bates, Larry, and Jedrzej Śniatycki. "On action-angle variables." Archive for Rational Mechanics and Analysis 120, no. 4 (1992): 337–43. http://dx.doi.org/10.1007/bf00380319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

YEON*, Kyu Hwang, and Eun Ji LIM. "Quantum Action-angle Variables." New Physics: Sae Mulli 63, no. 5 (2013): 524–30. http://dx.doi.org/10.3938/npsm.63.524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Llave, R. de la, A. González, À. Jorba, and J. Villanueva. "KAM theory without action-angle variables." Nonlinearity 18, no. 2 (2005): 855–95. http://dx.doi.org/10.1088/0951-7715/18/2/020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lahiri, Abhijit, Gautam Ghosh, and T. K. Kar. "Action-angle variables in quantum mechanics." Physics Letters A 238, no. 4-5 (1998): 239–43. http://dx.doi.org/10.1016/s0375-9601(97)00926-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chavanis, Pierre-Henri. "Kinetic theory with angle–action variables." Physica A: Statistical Mechanics and its Applications 377, no. 2 (2007): 469–86. http://dx.doi.org/10.1016/j.physa.2006.11.078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mahajan, S. M., and C. Y. Chen. "Plasma kinetic theory in action-angle variables." Physics of Fluids 28, no. 12 (1985): 3538. http://dx.doi.org/10.1063/1.865308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bellucci, Stefano, Armen Nersessian, Armen Saghatelian, and Vahagn Yeghikyan. "Quantum Ring Models and Action-Angle Variables." Journal of Computational and Theoretical Nanoscience 8, no. 4 (2011): 769–75. http://dx.doi.org/10.1166/jctn.2011.1751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hakobyan, T., O. Lechtenfeld, A. Nersessian, A. Saghatelian, and V. Yeghikyan. "Action-angle variables and novel superintegrable systems." Physics of Particles and Nuclei 43, no. 5 (2012): 577–82. http://dx.doi.org/10.1134/s1063779612050152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khein, Alexander, and D. F. Nelson. "Hannay angle study of the Foucault pendulum in action‐angle variables." American Journal of Physics 61, no. 2 (1993): 170–74. http://dx.doi.org/10.1119/1.17332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Action-Angle variables"

1

Boucetta, Mohamed. "Modèles locaux d'actions hamiltoniennes et variables action-angle." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376032479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dehouck, Victor. "Invariance Adiabatique dans les Mouvements Rythmiques Volontaires Humains." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK066.

Повний текст джерела
Анотація:
Les mouvements humains sont toujours complexes. Même une tâche simple comme prendre un verre d'eau implique de nombreux degrés de liberté i.e., différents groupes de muscles, plusieurs articulations et un nombre infini de trajectoires possible pour le bras. Néanmoins, les mouvements sont facilement disponibles aux sujets sains et semble être naturellement optimisé par le système nerveux central. Cela est souvent modélisé par la minimisation d'un paramètre donné du système, tel que l'énergie ou l'à-coup, qui semblent être des candidats naturels. Malheureusement, ces approches sont souvent limit
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Horsin, Romain. "Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S062/document.

Повний текст джерела
Анотація:
Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs équations de type Vlasov, comme l’équation de Vlasov-Poisson ou le modèle Vlasov-HMF, et présentant certaines analogies avec le phénomène d’amortissement non visqueux pour l’équation d’Euler 2D. Les résultats qui y sont décrits sont les suivants. Le premier est un théorème d’amortissement Landau pour des solutions numériques du modèle Vlasov-
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Papaphilippou, Yannis. "APPLICATION DE LA METHODE D'ANALYSE EN FREQUENCE EN DYNAMIQUE GALACTIQUE." Phd thesis, Université Paris-Diderot - Paris VII, 1997. http://tel.archives-ouvertes.fr/tel-00836476.

Повний текст джерела
Анотація:
Dans le but de clarifier les aspects dynamiques des modèles galactiques triaxiaux, le potentiel logarithmique est étudié a travers la méthode d'analyse en fréquence. Les caractéristiques dynamiques principales du système sont présentées en utilisant le formalisme hamiltonien approprié. Afin de comparer cette nouvelle approche avec des études précédentes, la méthode est appliquée a la version axisymétrique du potentiel. La précision de la méthode est démontrée a travers des techniques de perturbation et des transformations numériques en variables action-angle. En outre, la construction des appl
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khorev, Alexeĭ Borisovich. "The concept of approximate action-angle variables for nonintegrable Hamiltonian dynamics." Phd thesis, 2002. http://hdl.handle.net/1885/148601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Action-Angle variables"

1

Mann, Peter. Poisson Brackets & Angular Momentum. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0017.

Повний текст джерела
Анотація:
This chapter discusses canonical transformations and gauge transformations and is divided into three sections. In the first section, canonical coordinate transformations are introduced to the reader through generating functions as the extension of point transformations used in Lagrangian mechanics, with the harmonic oscillator being used as an example of a canonical transformation. In the second section, gauge theory is discussed in the canonical framework and compared to the Lagrangian case. Action-angle variables, direct conditions, symplectomorphisms, holomorphic variables, integrable syste
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mann, Peter. The Structure of Phase Space. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0023.

Повний текст джерела
Анотація:
This chapter introduces the reader to canonical perturbation theory as a tool for studying near-integrable systems. Many problems in physics and chemistry do not have exact analytical solutions; these systems are in direct opposition to integrable systems and action-angle variables. The chapter starts by considering tiny perturbations to integrable Hamiltonians. Poincaré in 1893 claimed this was the fundamental question of classical mechanics and, fittingly, Hamilton–Jacobi theory is the starting point. The chapter develops Poincaré’s fundamental equation as well as Delaunay’s small divisor pr
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Action-Angle variables"

1

Dittrich, W., and Martin Reutera. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56430-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36786-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-97465-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58298-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21677-5_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dittrich, Walter, and Martin Reuter. "Action-Angle Variables." In Classical and Quantum Dynamics. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-97921-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spergel, David N. "Natural Action-Angle Variables." In Structure and Dynamics of Elliptical Galaxies. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3971-4_84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oevel, G., B. Fuchssteiner, and M. Błaszak. "Action-Angle Variables and Asymptotic Data." In Nonlinear Evolution Equations and Dynamical Systems. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stupakov, Gennady, and Gregory Penn. "Action-Angle Variables and Liouville’s Theorem." In Graduate Texts in Physics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90188-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stupakov, Gennady, and Gregory Penn. "Action-Angle Variables for Betatron Oscillations." In Graduate Texts in Physics. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90188-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Action-Angle variables"

1

Visinescu, Mihai. "Complete integrability of geodesics in toric Sasaki-Einstein space T 1,1 and action-angle variables." In HIGH ENERGY GAMMA-RAY ASTRONOMY: 6th International Meeting on High Energy Gamma-Ray Astronomy. Author(s), 2017. http://dx.doi.org/10.1063/1.4972349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Renno, Jamil M. "Inverse Dynamics Based Fuzzy Logic Controller for a Single-Link Flexible Manipulator." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79028.

Повний текст джерела
Анотація:
This paper presents a novel method for an inverse dynamics based fuzzy logic controller (FLC) of a single-link flexible manipulator. The control action is distributed between two FLCs: a joint angle controller and a tip controller. A method for varying the ranges of the variables of the two controllers as a function of the motion parameters and the inverse dynamics of the system is presented. Simulation results show that the joint trajectory tracking is accomplished and the residual vibration of the flexible link is suppressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kulshreshtha, Digvijay B., and S. A. Channiwala. "Flow in Atomizers: Influence of Different Parameters on the Performance Characteristics of Plain Orifice Atomizer and Pressure Swirl Atomizer of a Fuel Injection System of Gas Turbine Combustor." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77122.

Повний текст джерела
Анотація:
The atomization process is essentially one in which bulk liquid is converted into small drops. Basically, it can be considered as a disruption of the consolidating influence of surface tension by the action of internal and external forces. In the absence of such disruptive forces, surface tension tends to pull the liquid into the form of a sphere, since this has the minimum surface energy. Liquid viscosity exerts a stabilizing influence by opposing any change in system geometry. On the other end, aerodynamic forces acting on the liquid surface may promote the disruption process by applying an
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kwon, Hyun Jung, Yujiang Xiang, Salam Rahmatalla, R. Timothy Marler, Karim Abdel-Malek, and Jasbir S. Arora. "Optimization-Based Digital Human Dynamics: Santos™ Walking Backwards." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35616.

Повний текст джерела
Анотація:
An objective of this study is to simulate the backward walking motion of a full-body digital human model. The model consists of 55 degree of freedom – 6 degrees of freedom for global translation and rotation and 49 degrees of freedom representing the kinematics of the entire body. The resultant action of all the muscles at a joint is represented by the torque for each degree of freedom. The torques and angles at a joint are treated as unknowns in the optimization problem. The B-spline interpolation is used to represent the time histories of the joint angles and the well-established robotics fo
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Butcher, Eric A., and S. C. Sinha. "Canonical Perturbation of a Fast Time-Periodic Hamiltonian via Liapunov-Floquet Transformation." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4107.

Повний текст джерела
Анотація:
Abstract In this study a possible application of time-dependent canonical perturbation theory to a fast nonlinear time-periodic Hamiltonian with strong internal excitation is considered. It is shown that if the time-periodic unperturbed part is quadratic, the Hamiltonian may be canonically transformed to an equivalent form in which the new unperturbed part is time-invariant so that the time-dependent canonical perturbation theory may be successfully applied. For this purpose, the Liapunov-Floquet (L-F) transformation and its inverse associated with the unperturbed time-periodic quadratic Hamil
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gatapova, Elizaveta Ya, Vladimir V. Kuznetsov, Oleg A. Kabov, and Jean-Claude Legros. "Annular Liquid Film Flow Under Local Heating in Microchannel." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75253.

Повний текст джерела
Анотація:
In our previous investigations the formation of liquid bump of locally heated laminar liquid film with co-current gas flow was obtained [1,2]. The evaporation of liquid was left out of account. Heat transfer to the gas phase was approximately specified by a constant Biot number [2,3]. The aim of this work is an investigation of the evaporation effect, the hydrodynamics and the heat transfer of liquid film flow in a channel 0.2–1 mm height. The 2-D model of locally heated liquid film moving under gravity and the action of co-current gas flow with low viscosity in a channel are considered. The c
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raghavan, Madhusudan. "Kinematics of the Full-Toroidal Traction Drive Variator." In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/mech-14170.

Повний текст джерела
Анотація:
Abstract We present a geometric derivation of the kinematics of the steering action and the roller displacement in a full-toroidal continuously variable traction drive variator. In particular, expressions relating the inclination of the roller to its displacement for designs incorporating a caster angle are derived. These results are useful in the design of the control system for the variator.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Balabina, Tat'yana, Mariya Karelina, and Aleksey Mamaev. "THE INFLUENCE OF THE LENGTHS OF THE LINKS OF THE HINGED FOUR-LINK ON THE ANGLE OF HEIGHT, RETURN ANGLE AND RELATIVE DISPLACEMENT OF LINKS CONNECTED BY THE ELASTIC ELEMENT DURING THE OUTPUT LINK STABILITY." In PROBLEMS OF APPLIED MECHANICS. Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fd1ed03b024e0.49570399.

Повний текст джерела
Анотація:
Toothed-lever and cam-toothed-lever mechanisms are widely used in technological equipment of automatic and semi-automatic action to convert the one-way rotational motion of the input link into one-way rotary motion of the output link with periodic stops. To ensure periodic rotation with a precise fixed length, an elastic element with a preload of two-sided action is introduced into the mechanism, as a result of which the mechanism has a variable structure. Compared to other mechanisms of periodic rotation, in gear-link mechanisms there is a wide possibility of influencing the function of the p
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Meng, Qingkai, Zhifang Ke, Wei Wei, Molei Zhao, Jinghan Tu, and Qingdong Yan. "Study on the Transient Dynamic Characteristics of the Pitch-Regulated Device for Coaxilcopter Under Aerodynamic Loads." In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103937.

Повний текст джерела
Анотація:
Abstract Coaxilcopter with variable rotor space can dynamically adjust the parameters such as the angle of attack of blades through the pitch-regulated device, so it can adjust and change flight attitude. However, both the rotor aerodynamics and the structure of the pitch-regulated device are complex, and some of the forces generated by the rotor will act on such device in the form of a hinge moment, which would affect the realiablity of the variable pitch-regulated device and the whole craft. Therefore, a coaxilcopter with a pitch-regulated device is designed, and the finite element numerical
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carneiro, J. Falca˜o, and F. Gomes de Almeida. "VSC Approach Angle Based Boundary Layer Thickness: A New Variation Law and Its Stability Proof." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5948.

Повний текст джерела
Анотація:
A major drawback on the use of sliding mode controllers is their inherent intense control activity. A usual strategy to cope with this problem is to use a boundary layer around the switching surface. The boundary layer thickness choice is based on a compromise between smoothness in the control action and tracking error. Since this compromise may be difficult to achieve, several boundary layer thickness variation laws (BLTVL) have been proposed in literature. In a recent study [1] an interesting BLTVL was proposed, based on the approach angle of the state to the switching surface. Although inno
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Action-Angle variables"

1

Reiman, A. H., and N. Pomphrey. Computation of magnetic coordinates and action-angle variables. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5663222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Morrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10147775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Morrison, P. J., and D. Pfirsch. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5064541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!