Добірка наукової літератури з теми "Active margins and subduction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Active margins and subduction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Active margins and subduction":

1

Nelson, C. H., J. Gutiérrez Pastor, C. Goldfinger, and C. Escutia. "Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology." Natural Hazards and Earth System Sciences 12, no. 11 (November 1, 2012): 3191–208. http://dx.doi.org/10.5194/nhess-12-3191-2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. We summarize the importance of great earthquakes (Mw &amp;gtrsim; 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.
2

ORTEGA-FLORES, BERLAINE, LUIGI A. SOLARI, and FELIPE DE JESÚS ESCALONA-ALCÁZAR. "The Mesozoic successions of western Sierra de Zacatecas, Central Mexico: provenance and tectonic implications." Geological Magazine 153, no. 4 (December 17, 2015): 696–717. http://dx.doi.org/10.1017/s0016756815000977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCentral Mexico was subject to active tectonics related to subduction processes while it occupied a position in western equatorial Pangea during early Mesozoic time. The subduction of the palaeo-Pacific plate along the western North American and South American active continental margins produced volcanic arc successions which were subsequently rifted and re-incorporated to the continental margin. In this context, the fringing arcs are important in unravelling the continental accretionary record. Using petrographic analysis, detrital zircon geochronology and structural geology, this paper demonstrates that the Guerrero Arc (Guerrero Terrane) formed on top of a felsic volcaniclastic unit (Middle Jurassic La Pimienta Formation) and siliciclastic strata (Upper Triassic Zacatecas Formation and Arteaga Complex) of continental Mexican provenance, deposited across the continental margin and oceanic substrate. This assemblage was rifted away from continental Mexico to form an intervening oceanic assemblage (Upper Jurassic – Lower Cretaceous Las Pilas Volcanosedimentary Complex of the Arperos Basin), then accreted back more or less at the same place, all above the same east-dipping subduction zone. The accretion of the Guerrero Arc to the Mexican continental mainland (Sierra Madre Terrane) caused the deposition of a siliciclastic unit (La Escondida Phyllite), which recycled detritus from the volcaniclastic and siliciclastic underlying strata.
3

Utoplennikov, Vladimir K., and Anastasia D. Drabkina. "Mixgenetic concept of of oil and gas fields formation in basement and sedimentary cover on the shelf of South Vietnam." Georesursy 21, no. 4 (October 30, 2019): 27–33. http://dx.doi.org/10.18599/grs.2019.4.27-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
According to the geodynamic model of oil and gas formation, the most favorable conditions for the oil and gas fields are formed in the mobile zones of the earth’s crust, especially in areas of active continental margins, characterized by high seismicity, the presence of deep faults, the development of subduction and riftogenic processes. Therefore, it is logical that most of the world’s oil and gas deposits are concentrated in rifts or in the vicinity of paleo- and modern subduction zones. The study of the unique oil deposits in the granite basement of the White Tiger field, using data from other fields in the world, allows concluding that the formation of oil deposits in the basement can occur not only due to the resources of adjacent oil and gas deposits. Taking into account modern geodynamic ideas, in the context of the Earth’s internal geospheres, at least three oil generation zones can be distinguished: mantle-asthenospheric abiogenic synthesis; subduction-dissipative biomineral synthesis; stratospheric-biogenic synthesis. Obviously, all these three zones, as a single open system for the generation of hydrocarbons, will be interconnected only in conditions of deep faults, active continental margins and other parts of the Earth’s crust. This suggests that there are deep generation zones, which are currently fueling the developed fields.
4

Ootes, Luke, William J. Davis, Valerie A. Jackson, and Otto van Breemen. "Chronostratigraphy of the Hottah terrane and Great Bear magmatic zone of Wopmay Orogen, Canada, and exploration of a terrane translation model." Canadian Journal of Earth Sciences 52, no. 12 (December 2015): 1062–92. http://dx.doi.org/10.1139/cjes-2015-0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Paleoproterozoic Hottah terrane is the westernmost exposed bedrock of the Canadian Shield and a critical component for understanding the evolution of the Wopmay Orogen. Thirteen new high-precision U–Pb zircon crystallization ages are presented and support field observations of a volcano-plutonic continuum from Hottah terrane through to the end of the Great Bear magmatism, from >1950 to 1850 Ma. The new crystallization ages, new geochemical data, and newly published detrital zircon U–Pb data are used to challenge hitherto accepted models for the evolution of the Hottah terrane as an exotic arc and microcontinent that arrived over a west-dipping subduction zone and collided with the Slave craton at ca. 1.88 Ga. Although the Hottah terrane does have a tectonic history that is distinct from that of the neighbouring Slave craton, it shares a temporal history with a number of domains to the south and east — domains that were tied to the Slave craton by ca. 1.97 Ga. It is interpreted herein that Hottah terrane began to the south of its current position and evolved in an active margin over an always east-dipping subduction system that began prior to ca. 2.0 Ga and continued to ca. 1.85 Ga, and underwent tectonic switching and migration. The stratigraphy of the ca. 1913–1900 Ma Hottah plutonic complex and Bell Island Bay Group includes a subaerial rifting arc sequence, followed by basinal opening represented by marginal marine quartz arenite and overlying ca. 1893 Ma pillowed basalt flows and lesser rhyodacites. We interpret this stratigraphy to record Hottah terrane rifting off its parental arc crust — in essence the birth of the new Hottah terrane. This model is similar to rapidly rifting arcs in active margins — for example, modern Baja California. These rifts generally occur at the transition between subduction zones (e.g., Cocos–Rivera plates) and transtensional shear zones (e.g., San Andreas fault), and we suggest that extension-driven transtensional shearing, or, more simply, terrane translation, was responsible for the evolution of Bell Island Bay Group stratigraphy and that it transported this newly born Hottah terrane laterally (northward in modern coordinates), arriving adjacent to the Slave craton at ca. 1.88 Ga. Renewed east-dipping subduction led to the Great Bear arc flare-up at ca. 1876 Ma, continuing to ca. 1869 Ma. This was followed by voluminous Great Bear plutonism until ca. 1855 Ma. The model implies that it was the westerly Nahanni terrane and its subducting oceanic crust that collided with this active margin, shutting down the >120 million year old, east-dipping subduction system.
5

Billi, Andrea, Claudio Faccenna, Olivier Bellier, Liliana Minelli, Giancarlo Neri, Claudia Piromallo, Debora Presti, Davide Scrocca, and Enrico Serpelloni. "Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean." Bulletin de la Société Géologique de France 182, no. 4 (July 1, 2011): 279–303. http://dx.doi.org/10.2113/gssgfbull.182.4.279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In the western Mediterranean area, after a long period (late Paleogene-Neogene) of Nubian (W-Africa) northward subduction beneath Eurasia, subduction has almost ceased, as well as convergence accommodation in the subduction zone. With the progression of Nubia-Eurasia convergence, a tectonic reorganization is therefore necessary to accommodate future contraction. Previously-published tectonic, seismological, geodetic, tomographic, and seismic reflection data (integrated by some new GPS velocity data) are reviewed to understand the reorganization of the convergent boundary in the western Mediterranean. Between northern Morocco, to the west, and northern Sicily, to the east, contractional deformation has shifted from the former subduction zone to the margins of the two back-arc oceanic basins (Algerian-Liguro-Provençal and Tyrrhenian basins) and it is now mainly active in the south-Tyrrhenian (northern Sicily), northern Liguro-Provençal, Algerian, and Alboran (partly) margins. Onset of compression and basin inversion has propagated in a scissor-like manner from the Alboran (c. 8 Ma) to the Tyrrhenian (younger than c. 2 Ma) basins following a similar propagation of the cessation of the subduction, i.e., older to the west and younger to the east. It follows that basin inversion is rather advanced on the Algerian margin, where a new southward subduction seems to be in its very infant stage, while it has still to really start in the Tyrrhenian margin, where contraction has resumed at the rear of the fold-thrust belt and may soon invert the Marsili oceanic basin. Part of the contractional deformation may have shifted toward the north in the Liguro-Provençal basin possibly because of its weak rheological properties compared with those of the area between Tunisia and Sardinia, where no oceanic crust occurs and seismic deformation is absent or limited. The tectonic reorganization of the Nubia-Eurasia boundary in the study area is still strongly controlled by the inherited tectonic fabric and rheological attributes, which are strongly heterogeneous along the boundary. These features prevent, at present, the development of long and continuous thrust faults. In an extreme and approximate synthesis, the evolution of the western Mediterranean is inferred to follow a Wilson Cycle (at a small scale) with the following main steps : (1) northward Nubian subduction with Mediterranean back-arc extension (since ~35 Ma); (2) progressive cessation, from west to east, of Nubian main subduction (since ~15 Ma); (3) progressive onset of compression, from west to east, in the former back-arc domain and consequent basin inversion (since ~8–10 Ma); (4) possible future subduction of former back-arc basins.
6

Gordienko, I. V., O. R. Minina, L. I. Vetluzhskikh, A. Ya Medvedev, and D. Odgerel. "Hentei-Dauria fold system of the Mongolia-Okhotsk belt: magmatism, sedimentogenesis, and geodynamics." Geodynamics & Tectonophysics 9, no. 3 (October 9, 2018): 1063–97. http://dx.doi.org/10.5800/gt-2018-9-3-0384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The geostructural, petrological, geochemical, geochronological and biostratigraphic studies were conducted in the Hentei-Dauria fold system of the Mongolia-Okhotsk orogenic belt. This Paleozoic system is composed mainly of three heterochronous rock associations related to the onset and development of oceanic basins and active margins in the conjugation zone of the Siberian continent and the Mongolia-Okhotsk ocean. This region developed in three stages: (1) Late Caledonian (Ordovician – Early Silurian), (2) Early Hercynian (Late Silurian – Devonian), and (3) Late Hercynian (Carboniferous–Permian). In the Late Caledonian, oceanic seafloor spreading was initiated, deep-sea siliceous deposits were formed, basaltic and andesitic pillow lavas were erupted, and layered and cumulative gabbros, gabbro-dolerite dykes and subduction zones with island-arc magmatism were formed. After a short quiescence period, new zones of spreading and subduction occurred at the active margins of the Mongolia-Okhotsk ocean in the Early Hercynian. In the Late Hercynian, large back-arc sedimentary basins, accretionary prisms and connecting intraplate magmatic complexes were formed in all structures of the Hentei-Dauria fold system. As a result of our studies, we propose a comprehensive model showing the geodynamic development of the Hentei-Dauria fold system that occurred in the area of the Mongolia-Okhotsk Ocean and its margins.
7

Sokolov, S. D., L. I. Lobkovsky, V. A. Vernikovsky, M. I. Tuchkova, N. O. Sorokhtin, and M. V. Kononov. "Late Mesozoic–Cenozoic Tectonics and Geodynamics of the East Arctic Region." Russian Geology and Geophysics 63, no. 4 (April 1, 2022): 324–41. http://dx.doi.org/10.2113/rgg20214435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Tectonic and geodynamic models of the formation of the Amerasian Basin are discussed. The Arctic margins of the Chukchi region and Northern Alaska have much in common in their Late Jurassic–Early Cretaceous tectonic evolution: (1) Both have a Neoproterozoic basement and a complexly deformed sedimentary cover, with the stage of Elsmere deformations recorded in their tectonic history; (2) the South Anyui and Angayucham ocean basins have a common geologic history from the beginning of formation in the late Paleozoic to the closure at the end of the Early Cretaceous, which allows us to consider them branches of the single Proto-Arctic Ocean, the northern margin of which was passive and the southern margin was active; (3) the dipping of the oceanic and, then, continental lithosphere took place in subduction zones southerly; (4) the collision of the passive and active margins of both basins occurred at the end of the Early Cretaceous and ended in Hauterivian–Barremian time; (5) the collision resulted in thrust–fold structures of northern vergence in the Chukchi fold belt and in the orogen of the Brooks Ridge. A subduction-convective geodynamic model of the formation of the Amerasian Basin is proposed, which is based on seismic-tomography data on the existence of a circulation of matter in the upper mantle beneath the Arctic and East Asia in a horizontally elongated convective cell with a length of several thousand kilometers. This circulation involves the subducted Pacific lithosphere, the material of which moves along the bottom of the upper mantle from the subduction zone toward the continent, forming the lower branch of the cell, and the closing upper branch of the cell forms a reverse flow of matter beneath the lithosphere toward the subduction zone, which is the driving force determining the surface kinematics of crustal blocks and the deformation of the lithosphere. The viscous dragging of the Amerasian lithosphere by the horizontal flow of the upper mantle matter toward the Pacific leads to the separation of the system of blocks of Alaska and the Chukchi region from the Canadian Arctic margin. The resulting scattered deformations can cause a different-scale thinning of the continental crust with the formation of a region of Central Arctic elevation and troughs or with a breakup of the continental crust with subsequent rifting and spreading in the Canadian Basin.
8

Watson, S. J., J. J. Mountjoy, and G. J. Crutchley. "Tectonic and geomorphic controls on the distribution of submarine landslides across active and passive margins, eastern New Zealand." Geological Society, London, Special Publications 500, no. 1 (December 19, 2019): 477–94. http://dx.doi.org/10.1144/sp500-2019-165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSubmarine landslides occur on continental margins globally and can have devastating consequences for marine habitats, offshore infrastructure and coastal communities due to potential tsunamigenesis. Therefore, understanding landslide magnitude and distribution is central to marine and coastal hazard planning.We present the first submarine landslide database for the eastern margin of New Zealand comprising >2200 landslides occurring in water depths from c. 300–4000 m. Landslides are more prevalent and, on average, larger on the active margin compared with the passive margin. We attribute higher concentrations of landslides on the active margin to tectonic processes including uplift and oversteepening, faulting and seamount subduction. Submarine landslide scars are concentrated around canyon systems and close to canyon thalwegs. This suggests that not only does mass wasting play a major role in canyon evolution, but also that canyon-forming processes may provide preconditioning factors for slope failure.Results of this study offer unique insights into the spatial distribution, magnitude and morphology of submarine landslides across different geological settings, providing a better understanding of the causative factors for mass wasting in New Zealand and around the world.
9

Meighan, Hallie E., and Jay Pulliam. "Seismic anisotropy beneath the northeastern Caribbean: implications for the subducting North American lithosphere." Bulletin de la Société Géologique de France 184, no. 1-2 (January 1, 2013): 67–76. http://dx.doi.org/10.2113/gssgfbull.184.1-2.67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Active plate boundaries in the Caribbean form a complex tectonic environment that includes transform and subduction zones. The Caribbean-North American plate boundary is one such active margin, where subduction transitions from arc- to oblique-type off the northeast coast of Puerto Rico. Understanding mantle flow in this region will not only help determine the nature of tectonic activity and mantle dynamics that control these margins, but will also aid our understanding of the fate of subducting lithosphere. The existence of tears, windows, and gaps in subducting slabs has been proposed at various locations around the world but few have been confirmed. Since mantle flow and crustal deformation are believed to produce seismic anisotropy in the asthenosphere and lithosphere, searching for changes in, for example, SKS splitting parameters can help identify locations at which subducting slabs have been disrupted. Several lines of evidence support the notion of a slab tear within the subducting North American plate at this transition zone, including the counter-clockwise rotation of the Puerto Rico microplate over the past ~10 Ma, clusters of small seismic events, and trench collapse initiating ~3.3 m.y. Here we present results from a detailed investigation of seismic anisotropy from 28 stations across six networks in the Northeast Caribbean that support the hypothesis of a significant slab gap in the vicinity of the U.S. and British Virgin islands. A regional synthesis of our results reveals fast shear wave polarizations that are generally oriented parallel to the plate boundary with intermediate to high SH-SV delay times. For example, polarization directions are oriented roughly NE-SW along the bulk of the Lesser Antilles, E-W along the Puerto Rico trench and the northern Lesser Antilles, and NW-SE beneath Hispaniola. Beneath the U.S. and British Virgin Islands, however, the fast polarization direction differs markedly from the regional pattern, becoming almost perpendicular to the plate boundary. Stations on Anegada, British Virgin islands and St. Croix, U.S. Virgin islands show a fast polarization direction that is oriented nearly NNE-SSW and smaller delay times than surrounding stations. These results suggest that mantle flow is redirected NE-SW at this location through a gap in the subducted lithosphere of the North American plate.
10

Hall, Robert. "The subduction initiation stage of the Wilson cycle." Geological Society, London, Special Publications 470, no. 1 (February 19, 2018): 415–37. http://dx.doi.org/10.1144/sp470.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn the Wilson cycle, there is a change from an opening to a closing ocean when subduction begins. Subduction initiation is commonly identified as a major problem in plate tectonics and is said to be nowhere observable, yet there are many young subduction zones at the west Pacific margins and in eastern Indonesia. Few studies have considered these examples. Banda subduction developed by the eastwards propagation of the Java trench into an oceanic embayment by tearing along a former ocean–continent boundary. The earlier subducted slab provided the driving force to drag down unsubducted oceanic lithosphere. Although this process may be common, it does not account for young subduction zones near Sulawesi at different stages of development. Subduction began there at the edges of ocean basins, not at former spreading centres or transforms. It initiated at a point where there were major differences in elevation between the ocean floor and the adjacent hot, weak and thickened arc/continental crust. The age of the ocean crust appears to be unimportant. A close relationship with extension is marked by the dramatic elevation of land, the exhumation of deep crust and the spectacular subsidence of basins, raising questions about the time required to move from no subduction to active subduction, and how initiation can be identified in the geological record.

Дисертації з теми "Active margins and subduction":

1

Mountjoy, Joshu Joseph Byron. "Development of submarine canyon systems on active margins: Hikurangi Margin, New Zealand." Thesis, University of Canterbury. Geological Sciences, 2009. http://hdl.handle.net/10092/3107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development and activity of submarine canyons on continental margins is strongly influenced by temporal and spatial changes in sediment distribution associated with orbitally-forced sea-level cyclicity. On active margins, canyons are also strongly influenced by tectonic processes such as faulting, uplift and earthquakes. Within this framework the role of mass-wasting processes, including sediment failures, bedrock landslides and sediment gravity flows, are to: 1) transport material across the slope; 2) act as intra-slope sediment sources; and 3) shape seafloor morphology. In this project the seafloor-landscape signatures of tectonic and geomorphic processes are analysed to interpret the development of submarine canyon morphology on active margins. Datasets include high-resolution bathymetry data (Simrad EM300), multichannel seismic reflection data (MCS), high-resolution 3.5 kHz seismic reflection data, sediment cores, and dated seafloor samples. High-resolution bathymetric grids are analysed using techniques developed for terrain-roughness analysis in terrestrial landscapes to objectively map and interpret features related to seafloor mass-wasting processes. The Hikurangi subduction margin of New Zealand provides world-class examples of the control of tectonic and sedimentary processes on margin development, hosting multiple examples of deeply-incised canyon systems across a range of scales. Two main study sites, in Poverty Bay and Cook Strait, provide examples of canyon formation. From these examples conceptual and representative models are developed for the spatial and temporal relationships between active tectonic structures, geology, sediment supply, slope- and shelf-incised canyons, slope gully systems, and bedrock mass failures. The Poverty Bay site occurs on the subduction-dominated northern Hikurangi Margin, where the ~3000 km² Poverty re-entrant hosts the large Poverty Canyon system, the only shelf-break-to-subduction-trough canyon on the northern margin. The geomorphic development of the re-entrant is affected by gully development on the upper slope, and multi-cubic-kilometre-scale submarine landslides. From this site the study focuses on the initiation and development of upper-slope gullies and the role of deep-seated slope failure in upper-slope evolution. The Cook Strait site occurs on the southern Hikurangi Margin in the subduction-to-strike-slip transition zone. The 1800 km² Cook Strait Canyon incises almost 50 km into the continental shelf, with a multi-branching canyon head converging to a deeply slope-incised meandering main channel fed by multiple contributing slope canyons. Other medium-sized canyons are incised into the adjacent continental slope. Fluvial sediment supply to the coast is relatively low on the southern margin, but Cook Strait is subject to large diurnal tidal currents that mobilise sediment through the main strait area. Prior to the morphostructural analysis of the Cook Strait and Poverty study sites a revision of the tectonic structure was undertaken. In Cook Strait a revision of the available fault maps was undertaken as part of a wider, related tectonic study of the central New Zealand region. In Poverty Bay very limited prior information was available, and as part of this study the structure and stratigraphy of the entire shelf and upper slope has been interpreted. On active tectonic margins submarine canyons respond to tectonics at: 1) margin-setting scales relating to their ability to become shelf incised; 2) regional scales relating to canyon-incision response to base-level perturbations; and 3) local scales relating to propagating structures affecting canyon location and geometry. Interpretation of the spatial distribution of fluid vent sites, gully development and landslide scars leads to the conclusion that seepage-driven failure is not a primary control on the widespread instances of gully formation and landslide erosion affecting structurally-generated relief across the margin. Rather, the erosion of tectonic ridges is dominated by tectonics by: slope oversteepening; weakening of the rockmass in fault-damage zones; and triggering of slope failure by earthquake-generated cyclic loading. Deep-seated mass failures affect numerous aspects of submarine landscapes and play a major role in the enlargement of canyon systems. They enable the development of slope gully systems and represent a major intra-slope sediment source. Quantitative morphometric analysis together with MCS data indicate that landslides may evolve to be active complexes where landslide debris is remobilized repeatedly, analogous to terrestrial-earthflow processes. This process has not previously been documented on submarine slopes. A model is presented for the evolution of active margin canyons that contrasts highstand and lowstand canyon activity in terms of channel incision, sedimentary processes and slope-erosion processes. During sea-level highstand intervals, canyons become decoupled from their terrestrial/coastal sediment-supply source areas, while during sea-level lowstand intervals, canyons are coupled to fluvial and littoral sediment-supply sources, and top-down (i.e. shelf-to-lower-slope) sediment transport and channel incision is active. Canyon-head areas are incision dominated during the lowstand while mid to lower canyon reaches experience both a transient increase in sediment in storage and canyon-fill degradation and incision into bedrock. Tectonics influences the canyon landscape through both uplift-controlled perturbations to canyon base-levels and earthquake-triggering of mass movement. Following sea-level rise the sediment supply to canyon heads will be switched off at a certain threshold sea level. From this point canyon heads become aggradational. Mid to lower canyon reaches continue to incise due to continuing tectonic uplift and earthquake-triggered slope instability. Knickpoints are propagated up channel and excavate canyon and sub-canyon channels from the bottom up. Thus, while top-down infilling of non-coupled canyons occurs during sea-level highstands, the lower reaches of active margin canyons continue to incise due the influence of tectonic processes.
2

Paquet, Fabien. "Evolution morphostructurale des bassins de marge active en subduction : l'exemple du bassin avant arc de Hawke Bay en Nouvelle-Zélande = Morphostructural evolution of active subduction margin basins : the example of the Hawke Bay forearc basin, New Zealand /." Rennes : CNRS, Université de Rennes, 2008. http://library.canterbury.ac.nz/etd/adt-NZCU20080225.224857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.) -- l'Université de Rennes, 2007.
"Thése de Doctorat de l'Université de Rennes 1 réalisée en co-tutelle avec l'Université de Canterbury (Christchurch, Nouvelle-Zélande)." "Soutenue le 9 novembre 2007." Includes bibliographical references. Also available via WWW.
3

Martillo, Bustamante Carlos. "Enregistrements stratigraphiques des cycles glacio-eustatiques et de la déformation durant le Pléistocène le long de la marge centrale d’Équateur : exploitation des données de la campagne ATACAMES." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4020/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif de cette étude est de contraindre les déformations au cours du Pléistocène d'une marge active à partir de l’analyse sismo-stratigraphique des sédiments conservés sur la plate-forme et la pente supérieure, le long de la marge centrale d’Equateur. A partir les données de sismique haute résolution et de carottage collectées pendant l'expédition Atacames (2012), plusieurs bassins ont été identifiés. La répartition latérale et de la succession des séquences T-R dans ces bassins montrent une distribution complexe des sédiments dans le temps et l'espace. Ce travail montre que, le long des marges actives, l’analyse sismo-stratigraphique de l’enregistrement des séquences liées aux cycles eustatiques du Pléistocène est un outil très puissant. A l'échelle locale, la subduction de seamounts perturbe et renforce l'effet de déformation régionale de la ride de Carnegie
The aim of this study is to constrain recent deformation and stratigraphic evolution of an active margin, using sismo-stratigraphic analysis of Pleistocene sediment preserved on the margin shelf and upper slope along of the Central Ecuadorian margin. From the extensive geophysical and sedimentological investigations carried out during the ATACAMES expedition (2012), we are identified serveral basins in the Ecuadorian margin. A detailed analysis of the thickness, the lateral distribution and stacking patterns in these basins show a complex distribution of sediments in time and space. The seismic-sequence stratigraphy analysis related to eustatic cycles of the Pleistocene shows a regional regional unconformity at the base (1782-Ka as minimum age), which can correspond to the signature of the beginning of the Carnegie ridge collision
4

Buret, Christophe. "Les bassins sédimentaires d'un domaine avant-arc : la marge active de Nouvelle-Zélande." Lille 1, 1996. http://www.theses.fr/1996LIL10225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bien qu'appartenant à une marge actuellement active (marge hikurangi), le bassin avant-arc de l'île nord de Nouvelle-Zélande émerge largement. Les variations enregistrées par la sédimentation néogène et quaternaire dans le domaine avant-arc émerge (incluant la chaîne côtière, correspondant à la partie haute du prisme d'accrétion) ont permis de mettre en évidence différentes étapes de développement des bassins depuis le début de la subduction hikurangi vers 25 ma. Trois grands ensembles lithologiques, séparés par des discontinuités majeures, ont été reconnus. Le premier ensemble est essentiellement constitué de dépôts silicoclastiques déposés en milieu profond (turbidités et silts massifs). Cette série d'âge miocène (18-6 ma environ) est transgressive et discordante sur une marge déforme lors du démarrage de la subduction. Un deuxième ensemble est représenté par des calcaires et pelites d'âge pliocène (5-3 ma environ) qui marque une diminution des paléotranches d'eau
Un dernier ensemble, enfin, d'âge pliocène supérieur - quaternaire (3-0 ma) présente des faciès diversifies de milieux allant de la plate-forme interne au domaine littoral marin voire continental. Ces faciès montrent une cyclicite très nette. Notre étude a permis de mettre en évidence une discontinuité majeure à la limite mio-pliocène (6-4 ma) entre les ensembles (1) et (2). Cette discontinuité s'accompagne le plus souvent d'une lacune sédimentaire qui peut être très importante et d'une durée pouvant atteindre 6 à 8 ma. De plus, la discontinuité est soulignée par une légère discordance angulaire (généralement 5 a 10\). La discontinuité observée entre les ensembles (2) et (3) est marquée par les premières arrivées conglomératiques majeures en provenance du secteur de la chaîne axiale. Les courbes de subsidence réalisées sur une transversale de la marge ont permis de montrer que la période 6-4 ma correspondait a un changement majeur de l'évolution des bassins. Le domaine avant-arc correspond d'abord à une marge en subsidence affectée de failles normales (érosion tectonique probable) puis à une marge en compression sur laquelle va se différencier un véritable bassin avant-arc limité par des bordures en soulèvement (chaîne axiale et chaîne côtière). Cette compression pourrait être liée au passage de la bordure du plateau hikurangi (ou une autre aspérité majeure) dans la subduction puis au développement d'un prisme d'accrétion
5

Claussmann, Barbara. "Dépôts de transport en masse le long de rides chevauchantes : nouvelles contraintes sur l'évolution tectonostratigraphique des bassins associés à la subduction (Marge Hikurangi, Nouvelle-Zélande)." Thesis, Amiens, 2021. http://www.theses.fr/2021AMIE0034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le long des marges actives, la croissance de rides anticlinales chevauchantes et les processus tectoniques associés sont souvent cités comme étant l'une des causes principales entrainant des déstabilisations de pente et du transport en masse de sédiments au dos des prismes de subduction. Les dépôts associés (MTDs) sont très variés, ne serait-ce que le long d'une même marge, et leur nature, origine et expression peuvent témoigner de l'évolution tectonostratigraphique des bassins sédimentaires liés à la subduction (e.g., bassins perchés). Ce travail présente une analyse haute résolution des caractéristiques et mécanismes de mise en place des sédiments déstabilisés en examinant des MTDs miocènes affleurant dans la partie interne émergée de la marge Sud-Hikurangi (Île du Nord, Nouvelle-Zélande). Des données régionales de sismique réflexion marine ont aussi été utilisées afin d’analyser les géométries et architectures de plus grande échelle. Les résultats témoignent de l'importance des rides structurales dans le contrôle du remplissage sédimentaire des bassins. Différents styles de MTDs sont générés en fonction de leur position structurale (forelimb et backlimb) et à des moments spécifiques du développement des rides et des bassins perchés. Ceci suggère que les MTDs sont de puissants marqueurs tectonostratigraphiques. Ici, ils ont aidé à reconstruire, à des périodes clés, l'évolution de deux bassins et de la marge Hikurangi elle-même. Cette étude offre de nouvelles perspectives sur les interactions entre la déformation et la sédimentation pouvant être essentielles pour la compréhension de l’évolution des marges actives, de leurs risques géologiques et pour leur exploration
Along active margins, the prevalence of thrust ridges and tectonic processes (e.g., uplift, slope oversteepening) is generally called out as one of the main recurrent reasons for generating slope failures and mass wasting on subduction complexes. The resulting mass-transport deposits (MTDs) are often seen to vary strongly along a single margin and therefore, this research work proposes to investigate their nature, origin and significance in the frame of the tectonostratigraphic evolution of subduction-related sedimentary basins (e.g., trench-slope basins [TSBs]). Here, we present high-resolution outcrop-scale insights on both the characteristics and mechanisms of emplacement of the failed sediments by examining thrust-related MTDs from the Miocene cropping out in the emerged southern portion of the Hikurangi subduction margin (eastern North Island of New Zealand). Regional offshore seismic reflection data are also used to offer a broader overview and understanding of these systems through the study of the larger scale geometries and architectures. Results show the role and importance of the thrust ridges in controlling the TSB infilling. Different styles of MTDs are generated from different structural positions (forelimb and backlimb) and at specific times of thrust-ridge and TSB development. This suggests that MTDs are powerful tectonostratigraphic markers. Here, they help to unravel the evolution of two TSBs and more largely of the Hikurangi Margin at key periods. This study provides new insights on the close interplays between deformation and sedimentation, understandings of which may be key for geohazard, exploration and geodynamic predictions along active margins
6

Paquet, Fabien. "Morphostructural evolution of active margin basins : the example of the Hawke Bay forearc basin, New Zealand : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Geology at the University of Canterbury /." Thesis, University of Canterbury. Geological Sciences, 2007. http://hdl.handle.net/10092/1474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Topography growth and sediment fluxes in active subduction margin settings are poorly understood. Geological record is often scarce or hardly accessible as a result of intensive deformation. The Hawke Bay forearc basin of the Hikurangi margin in New Zealand is well suited for studying morphstructural evolution. It is well preserved, partly emerged and affected by active tectonic deformation during Pleistocene stage for which we have well dated series and well-known climate and eustasy. The multidisciplinary approach, integrating offshore and onshore seismic interpretations, well and core data, geological mapping and sedimentological sections, results in the establishment of a detailed stratigraphic scheme for the last 1.1 Ma forearc basin fill. The stratigraphy shows a complex stack of 11 eustasy-driven depositional sequences of 20, 40 and 100 ka periodicity. These sequences are preserved in sub-basins that are bounded by active thrust structures. Each sequence is characterized by important changes of the paleoenvironment that evolves between the two extremes of the glacial maximum and the interglacial optimum. Thus, the Hawke Bay forearc domain shows segmentation in sub-basins separated by tectonic ridges during sea level lows that become submerged during sea level highs. Over 100 ka timescale, deformation along active structures together with isostasy are responsible of a progressive migration of sequence depocenters towards the arc within the sub-basins. Calculation of sediment volumes preserved for each of the 11 sequences allows the estimation of the sediment fluxes that transit throughout the forearc domain during the last 1.1 Ma. Fluxes vary from c. 3 to c. 6 Mt.a⁻¹. These long-term variations with 100 ka to 1 Ma timescale ranges are attributed to changes in the forearc domain tectonic configuration (strain rates and active structure distribution). They reflect the ability of sub-basin to retain sediments. Short-term variations of fluxes (<100 ka) observed within the last 150 ka are correlated to drastic Pleistocene climate changes that modified erosion rates in the drainage area. This implies a high sensitiveness and reactivity of the upstream area to environmental changes in terms of erosion and sediment transport. Such behaviour of the drainage basin is also illustrated by the important increase of sediment fluxes since the European settlement during the 18th century and the following deforestation.
7

Hogarth, Leah Jolynn. "Tectonic signatures on active margins." Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3397001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2010.
Title from first page of PDF file (viewed March 25, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
8

Shaw, Beth. "Active tectonics of the Hellenic subduction zone." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Turino, Valeria. "The role of passive margins in the continental collision dynamics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20338/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
I margini passivi, formati durante il processo di rifting, sono caratterizzati da una zona tra continente e oceano costituita da litosfera continentale assottigliata a seguito dell’estensione. La dinamica del rifting influenza le dimensioni e la geometria del margine passivo. Inoltre, i margini passivi denominati magma rich sono associati ad una elevata produzione di magma derivante dalla fusione del mantello e alla conseguente messa in posto di rocce mafiche intrusive ed estrusive, mentre questo non avviene nel caso di margini magma poor. Tutte queste differenze fanno sì che la geometria e la reologia dei margini passivi siano molto varie. In questo progetto ho studiato come i diversi tipi di margini passivi, una volta arrivati alla zona di cerniera, influenzino la dinamica della subduzione e collisione continentale. In particolare, ho studiato la rottura dello slab in profondità e l’accrezione di crosta continentale alla placca sovrascorrente. Questi processi sono influenzati dalle caratteristiche del margine. Ho quindi sviluppato dei modelli bidimensionali di subduzione modellando diversi tipi di margini passivi, utilizzando un codice di modellazione numerica ad elementi finiti (Citcom), per avere una migliore comprensione del processo di subduzione e di capire ed interpretare la geologia delle zone di collisione continentale. I risultati mostrano che la presenza di margini passivi ha un impatto importante sul processo di subduzione. Si vede, infatti, che la variazione di profondità del break-off dello slab varia su 300 km, mentre quella del tempo relativo al break-off è di 50 Myr. I modelli che descrivono i margini magma poor, inoltre, sono consistenti con osservazioni geologiche che mostrano che parte del margine viene trasferito sulla placca sovrascorrente. Quelli che modellano i margini magma rich, invece, mostrano che il break-off avviene al di sopra del margine, in linea con le osservazioni che mostrano che è raro osservare margini di questo tipo in natura.
10

Pelletier, Bernard. "De la fosse de Manille à la chaîne de Tai͏̈wan : Etude géologique aux confins d'une subduction et d'une collision actives : Modèle géodynamique." Brest, 1985. http://www.theses.fr/1985BRES0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La péninsule d'hengchun correspond a l'émergence de la zone de collision active. Un ensemble des dernières nouvelles ont été interprétées afin de proposer un schéma structural et un modèle d'évolution de la subduction manilaise a la collision taiwanaise. On considère. 1. La mise en évidence du matériel ophiolitique oligo-miocène, 2. Une déformation majeure d'âge miocène, 3. Un système d'obduction-collision nettement séparé dans le temps, 4. Un dispositif structural avec des phases de structuration. Dans les nombreuses questions restées en suspens, celle relative a la grande chaine centrale est la plus importante

Книги з теми "Active margins and subduction":

1

Shaw, Beth. Active tectonics of the Hellenic subduction zone. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20804-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shaw, Beth. Active tectonics of the Hellenic subduction zone. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noriyuki, Nasu, and OJI International Seminar on the Formation of Ocean Margins (1983 : Ocean Research Institute, University of Tokyo), eds. Formation of active ocean margins. Tokyo: Terra Scientific Pub. Co., 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nasu, Noriyuki, Kazuo Kobayashi, Seiya Uyeda, Ikuo Kushiro, and Hideo Kagami, eds. Formation of Active Ocean Margins. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4720-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ring, Uwe. Deformation and exhumation at convergent margins: The Franciscan subduction complex. Boulder, Colo: Geological Society of America, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Giese, P., and J. Behrmann, eds. Active Continental Margins — Present and Past. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-38521-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Geological Society of London. Volcanic Studies Group. Meeting. Volcanism associated with extension at comsuming plate margins. London, England]: The Society, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ward, Brent C., and Shahin Dashtgard. Trials and tribulations of life on an active subduction zone: Field trips in and around Vancouver, Canada. Boulder, Colorado: The Geological Society of America, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taylor, Brian, and James Natland, eds. Active Margins and Marginal Basins of the Western Pacific. Washington, D. C.: American Geophysical Union, 1995. http://dx.doi.org/10.1029/gm088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meijer, Paul. Dynamics of active continental margins: The Andes and the Aegean region. [Utrecht: Faculteit Aardwetenschappen, Universiteit Utrecht], 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Active margins and subduction":

1

Naka, Jiro. "Broken Seamount Fragments in the Setogawa Subduction Complex." In Formation of Active Ocean Margins, 747–73. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Konishi, Kenji. "Coral Reefs and Present-Day Collision-Subduction Tectonics." In Formation of Active Ocean Margins, 875–90. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shipley, Thomas H., and Gregory F. Moore. "Sediment Accretion and Subduction in the Middle America Trench." In Formation of Active Ocean Margins, 221–55. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huchon, P., and J. C. De Bremaecker. "Influence of Izu Subduction-Collision on the Deformation of Central Japan." In Formation of Active Ocean Margins, 701–17. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Niitsuma, Nobuaki, and Fumio Akiba. "Neogene Tectonic Evolution and Plate Subduction in the Japanese Island Arcs." In Formation of Active Ocean Margins, 75–108. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tomoda, Yoshibumi, Hiromi Fujimoto, and Takeshi Matsumoto. "Thickness Anomalies of the Lithosphere, Driving Force of Subduction and Accretion Tectonics." In Formation of Active Ocean Margins, 43–58. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Taira, Asahiko. "Sedimentary Evolution of Shikoku Subduction Zone: The Shimanto Belt and Nankai Trough." In Formation of Active Ocean Margins, 835–51. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Frisch, Wolfgang, Martin Meschede, and Ronald Blakey. "Subduction zones, island arcs and active continental margins." In Plate Tectonics, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76504-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Frisch, Wolfgang, Martin Meschede, and Ronald C. Blakey. "Subduction Zones, Island Arcs and Active Continental Margins." In Springer Textbooks in Earth Sciences, Geography and Environment, 107–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88999-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Watanabe, Teruo, and Hirokazu Maekawa. "Early Cretaceous Dual Subduction System in and around the Kamuikotan Tectonic Belt, Hokkaido, Japan." In Formation of Active Ocean Margins, 677–99. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4720-7_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Active margins and subduction":

1

Delano, Jaime, Andy Howell, Kate Clark, and Timothy Stahl. "‘SLIPPING’ INTO THE SEA: CAN UPPER PLATE FAULTS PRODUCE COASTAL SUBSIDENCE AT SUBDUCTION MARGINS?" In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-379901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Catenaro, E., S. Formentin, M. Corno, and S. M. Savaresi. "Auto-calibration with Stability Margins for Active Damping Control in Electric Drivelines." In 2022 European Control Conference (ECC). IEEE, 2022. http://dx.doi.org/10.23919/ecc55457.2022.9838164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Berg, John, Kristi A. Morgansen, Eli Livne, Luca Riccobene, Federico Fonte, Francesco Toffol, Alessandro De Gaspari, Luca Marchetti, Sergio Ricci, and Paolo Mantegazza. "Analytical and Experimental Evaluation of Multivariable Stability Margins in Active Flutter Suppression Wind Tunnel Tests." In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-1261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sobolev, Alexander, Evgeny Asafov, Andrey Gurenko, Charbel Kazzy, Andrew Kerr, Aleksandr Chugunov, Valentina Batanova, Stephan Sobolev, John Valley, and Maxim Portnyagin. "Komatiite melts detect deep hydrous reservoirs in the mantle transition zone implying active subduction since Eoarchean time." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.5764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alexander, Jane. "ARE PROVENANCE INTERPRETATIONS FROM MAJOR, TRACE AND RARE EARTH ELEMENT DATA ACCURATE? RESULTS FROM FOUR ACTIVE MARGINS." In Northeastern Section - 57th Annual Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022ne-375336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Greene, H. Gary, Vaughn Barrie, and Brian J. Todd. "THE SKIPJACK ISLAND FAULT ZONE - AN ACTIVE TRANSCURRENT STRUCTURE WITHIN THE UPPER PLATE OF THE CASCADIA SUBDUCTION COMPLEX." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-297426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Niemi, Nathan A., Eric Cowgill, and Dylan Vasey. "THE GREATER CAUCASUS MOUNTAINS: A COMPLETE TRANSECT FROM ACTIVE SUBDUCTION TO CONTINENTAL COLLISION IN A SINGLE OROGENIC SYSTEM." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-360022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gastineau, Zane D. "Turbine Engine Performance Improvements: A Proactive Approach." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Turbine engine concepts for the future are placing ever-increasing demands on the design engineer. These future systems are seeking to increase performance while at the same time reduce costs. However, traditional engine design methods use large margins in the design process of a specific component in order to guarantee proper operation throughout the flight envelope over the life of the engine. These margins in fact reduce engine performance and increase the costs. In this paper, active control will be presented as one potential means of achieving the requirements for future turbine engines. In addition, specific active control applications will be discussed.
9

May, Ryan D., and Sanjay Garg. "Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit Regulators." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-70017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Current aircraft engine control logic uses a Min-Max control selection structure to prevent the engine from exceeding any safety or operational limits during transients due to throttle commands. This structure is inherently conservative and produces transient responses that are slower than necessary. In order to utilize the existing safety margins more effectively, a modification to this architecture is proposed, referred to as a Conditionally Active (CA) limit regulator. This concept uses the existing Min-Max architecture with the modification that limit regulators are active only when the operating point is close to a particular limit. This paper explores the use of CA limit regulators using a publicly available commercial aircraft engine simulation. The improvement in thrust response while maintaining all necessary safety limits is demonstrated in a number of cases.
10

Wartana, I. Made, and Ni Putu Agustini. "Optimal placement of UPFC for maximizing system loadability and minimizing active power losses in system stability margins by NSGA-II." In 2011 International Conference on Electrical Engineering and Informatics (ICEEI). IEEE, 2011. http://dx.doi.org/10.1109/iceei.2011.6021665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Active margins and subduction":

1

Thomas, M. D. Magnetic and gravity characteristics of the Thelon and Taltson orogens, northern Canada: tectonic implications. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Differences of opinion concerning the relationship between the Thelon tectonic zone and the Taltson magmatic zone, as to whether they are individual tectonic elements or two independent elements, have generated various plate tectonic models explaining their creation. Magnetic and gravity signatures indicate that they are separate entities and that the Thelon tectonic zone and the Great Slave Lake shear zone form a single element. Adopting the single-element concept and available age dates, a temporally evolving plate tectonic model of Slave-Rae interaction is presented. At 2350 Ma, an Archean supercontinent rifted along the eastern and southern margins of the Slave Craton. Subsequent ocean closure, apparently diachronous, began with subduction at 2070 Ma in the northern Thelon tectonic zone, followed by subduction under the Great Slave Lake shear zone at 2051 Ma. Subduction related to closure of an ocean between the Buffalo Head terrane and the Rae Craton initiated under the Taltson magmatic zone at 1986 Ma, at which time subduction continued along the Thelon tectonic zone. At 1970 Ma, collision in the northern Thelon tectonic zone is evidenced in the Kilohigok Basin. From 1957 to 1920 Ma, plutonism was active in the Taltson magmatic zone, Great Slave Lake shear zone, and southern Thelon tectonic zone. The plutonism terminated in the northern Thelon tectonic zone at 1950 Ma, but it resumed at 1910 Ma and continued until 1880 Ma. The East Arm Basin witnessed igneous activity as early as 2046 Ma, though this took place more continuously from 1928 to 1861 Ma; some igneous rocks bear subduction-related trace element signatures. These signatures, and the presence of northwest-verging nappes, may signify collision with the Great Slave Lake shear zone as a result of southeastward subduction, completing closure between the Slave and Rae cratons.
2

Drew, J. J., and R. M. Clowes. A re-interpretation of the seismic structure across the active subduction zone of western Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thybo, H. Interpretation of coincident seismic reflection and refraction profiles across the active subduction zone of western Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/129017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rautman, Christopher Arthur, and Joshua S. Stein. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/876351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jorge E. Corredor. Biological Ocean Margins Program. Active Microbes Responding to Inputs from the Orinoco River Plume. Final Report. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harris, L. B., P. Adiban, and E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aeromagnetic and ground gravity data for the Canadian Superior Province, filtered to extract long wavelength components and converted to pseudo-gravity, highlight deep, N-S trending regional-scale, rectilinear faults and margins to discrete, competent mafic or felsic granulite blocks (i.e. at high angles to most regional mapped structures and sub-province boundaries) with little to no surface expression that are spatially associated with lode ('orogenic') Au and Ni-Cu-PGE-Cr occurrences. Statistical and machine learning analysis of the Red Lake-Stormy Lake region in the W Superior Province confirms visual inspection for a greater correlation between Au deposits and these deep N-S structures than with mapped surface to upper crustal, generally E-W trending, faults and shear zones. Porphyry Au, Ni, Mo and U-Th showings are also located above these deep transverse faults. Several well defined concentric circular to elliptical structures identified in the Oxford Stull and Island Lake domains along the S boundary of the N Superior proto-craton, intersected by N- to NNW striking extensional fractures and/or faults that transect the W Superior Province, again with little to no direct surface or upper crustal expression, are spatially associated with magmatic Ni-Cu-PGE-Cr and related mineralization and Au occurrences. The McFaulds Lake greenstone belt, aka. 'Ring of Fire', constitutes only a small, crescent-shaped belt within one of these concentric features above which 2736-2733 Ma mafic-ultramafic intrusions bodies were intruded. The Big Trout Lake igneous complex that hosts Cr-Pt-Pd-Rh mineralization west of the Ring of Fire lies within a smaller concentrically ringed feature at depth and, near the Ontario-Manitoba border, the Lingman Lake Au deposit, numerous Au occurrences and minor Ni showings, are similarly located on concentric structures. Preliminary magnetotelluric (MT) interpretations suggest that these concentric structures appear to also have an expression in the subcontinental lithospheric mantle (SCLM) and that lithospheric mantle resistivity features trend N-S as well as E-W. With diameters between ca. 90 km to 185 km, elliptical structures are similar in size and internal geometry to coronae on Venus which geomorphological, radar, and gravity interpretations suggest formed above mantle upwellings. Emplacement of mafic-ultramafic bodies hosting Ni-Cr-PGE mineralization along these ringlike structures at their intersection with coeval deep transverse, ca. N-S faults (viz. phi structures), along with their location along the margin to the N Superior proto-craton, are consistent with secondary mantle upwellings portrayed in numerical models of a mantle plume beneath a craton with a deep lithospheric keel within a regional N-S compressional regime. Early, regional ca. N-S faults in the W Superior were reactivated as dilatational antithetic (secondary Riedel/R') sinistral shears during dextral transpression and as extensional fractures and/or normal faults during N-S shortening. The Kapuskasing structural zone or uplift likely represents Proterozoic reactivation of a similar deep transverse structure. Preservation of discrete faults in the deep crust beneath zones of distributed Neoarchean dextral transcurrent to transpressional shear zones in the present-day upper crust suggests a 'millefeuille' lithospheric strength profile, with competent SCLM, mid- to deep, and upper crustal layers. Mechanically strong deep crustal felsic and mafic granulite layers are attributed to dehydration and melt extraction. Intra-crustal decoupling along a ductile décollement in the W Superior led to the preservation of early-formed deep structures that acted as conduits for magma transport into the overlying crust and focussed hydrothermal fluid flow during regional deformation. Increase in the thickness of semi-brittle layers in the lower crust during regional metamorphism would result in an increase in fracturing and faulting in the lower crust, facilitating hydrothermal and carbonic fluid flow in pathways linking SCLM to the upper crust, a factor explaining the late timing for most orogenic Au. Results provide an important new dataset for regional prospectively mapping, especially with machine learning, and exploration targeting for Au and Ni-Cr-Cu-PGE mineralization. Results also furnish evidence for parautochthonous development of the S Superior Province during plume-related rifting and cannot be explained by conventional subduction and arc-accretion models.

До бібліографії