Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Adsorptive transfer stripping voltammetry.

Статті в журналах з теми "Adsorptive transfer stripping voltammetry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Adsorptive transfer stripping voltammetry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Majidi, Mir Reza, Karim Asadpour-Zeynali, and Mohammad Nazarpur. "Determination of Fenitrothion in River Water and Commercial Formulations by Adsorptive Stripping Voltammetry with a Carbon Ceramic Electrode." Journal of AOAC INTERNATIONAL 92, no. 2 (March 1, 2009): 548–54. http://dx.doi.org/10.1093/jaoac/92.2.548.

Повний текст джерела
Анотація:
Abstract A sol-gel carbon ceramic electrode (CCE) without any assigned electron transfer mediator or specific reagents was used for the determination of fenitrothion by square-wave adsorptive stripping voltammetry. Fenitrothion strongly adsorbs on a CCE surface, which enables the development of facile electrochemical quantitative methods. Operational parameters such as pH value, initial potential value, and pulse frequency were optimized, and the stripping voltammetric performance was studied by using square-wave voltammetry. Square-wave adsorptive stripping voltammetry was used to obtain calibration curves with 2 linear ranges, 0.0050.1 and 0.150 M; the lower linear range was used to calculate the detection limit, 0.0016 M (5 min adsorption). The effect of interference species on the determination of fenitrothion was also studied. The inherent stability, high sensitivity, low detection limit, and low cost of analysis are the advantages of this sensor. The present method was successfully applied to the determination of fenitrothion in a commercial formulation and river water samples. Analysis of real water samples by using the sensor demonstrated the feasibility of applying the sensor to the on-site monitoring of organophosphate compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fojta, Miroslav, Luděk Havran, Jana Fulnečková, and Tatiana Kubičárová. "Adsorptive Transfer Stripping AC Voltammetry of DNA Complexes with Intercalators." Electroanalysis 12, no. 12 (August 2000): 926–34. http://dx.doi.org/10.1002/1521-4109(200008)12:12<926::aid-elan926>3.0.co;2-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paleček, Emil, and Irena Postbieglová. "Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 214, no. 1-2 (December 1986): 359–71. http://dx.doi.org/10.1016/0022-0728(86)80108-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lorenzetti, Anabela S., Tania Sierra, Claudia E. Domini, Adriana G. Lista, Agustin G. Crevillen, and Alberto Escarpa. "Electrochemically Reduced Graphene Oxide-Based Screen-Printed Electrodes for Total Tetracycline Determination by Adsorptive Transfer Stripping Differential Pulse Voltammetry." Sensors 20, no. 1 (December 21, 2019): 76. http://dx.doi.org/10.3390/s20010076.

Повний текст джерела
Анотація:
Disposable electrochemically reduced graphene oxide-based (ERGO) screen-printed electrodes (SPE) were developed for the determination of total tetracyclines as a sample screening approach. To this end, a selective adsorption-detection approach relied on adsorptive transfer stripping differential pulse voltammetry (AdTDPV) was devised, where the high adsorption capacity and the electrochemical properties of ERGO were simultaneously exploited. The approach was very simple, fast (6 min.), highly selective by combining the adsorptive and the electrochemical features of tetracyclines, and it used just 10 μL of the sample. The electrochemical sensor applicability was demonstrated in the analysis of environmental and food samples. The not-fully explored AdTDPV analytical possibilities on disposable nanostructured transducers become a new tool in food and environmental fields; drawing new horizons for “in-situ” analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eskiköy, Dilek, Zehra Durmuş, and Esma Kiliç. "Electrochemical oxidation of atorvastatin and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids." Collection of Czechoslovak Chemical Communications 76, no. 12 (2011): 1633–49. http://dx.doi.org/10.1135/cccc2011117.

Повний текст джерела
Анотація:
Electrochemical behavior of atorvastatin (AT) and optimum conditions to its quantitative determination were investigated using voltammetric methods. Some electrochemical parameters such as diffusion coefficient, surface coverage of adsorbed molecules, electron transfer coefficient, standard rate constant and number of electrons were calculated using the results of cyclic voltammetry. A tentative mechanism for the oxidation for AT has been suggested. The oxidation signal of AT molecule was used to develop fully validated, new, rapid, selective and simple square-wave anodic adsorptive stripping voltammetric (AdsSWV) and differential pulse anodic stripping voltammetric (AdsDPV) methods to direct determination of AT in pharmaceutical dosage forms and biological samples. For the AdsDPV and AdsSWV techniques, linear working ranges were found to be 1.0 × 10–7–5.0 × 10–6and 3.0 × 10–7–5.0 × 10–6mol l–1, respectively. The detection limits obtained from AdsDPV and AdsSWV were calculated to be 6.55 × 10–8and 1.53 × 10–7mol l–1, respectively. The methods were successfully applied to assay the drug in tablets, human blood serum and human urine.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Öztürk, Funda, Ibrahim Hüdai Taşdemir, Zehra Durmuş, and Esma Kiliç. "Electrochemical behavior of disopyramide and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids." Collection of Czechoslovak Chemical Communications 75, no. 6 (2010): 685–702. http://dx.doi.org/10.1135/cccc2010010.

Повний текст джерела
Анотація:
Electrochemical behavior of disopyramide (DPA) and optimum conditions to its quantitative determination were investigated using voltammetric methods. Some electrochemical parameters such as diffusion coefficient, surface coverage of adsorbed molecules, electron transfer coefficient, standard rate constant and number of electrons were calculated using the results of cyclic and square-wave voltammetry. All studies were based on the quasi-reversible and adsorption-controlled electrochemical reduction signal of DPA at about –1.60 V vs Ag|AgCl at pH 10.0 in Britton–Robinson buffer. This adsorptive character of molecule was used to develop fully validated, new, rapid, selective and simple square-wave cathodic adsorptive stripping voltammetric (SWCAdSV) method to the direct determination of DPA in pharmaceutical dosage forms and biological samples without time-consuming steps prior to drug assay. Peak current of electrochemical reduction of DPA was found to change linearly with the concentration in the range from 7.15 × 10–8 mol l–1 (0.024 mg l–1) to 1.43 × 10–6 mol l–1 (0.49 mg l–1). Limit of detection (LOD) and limit of quantification (LOQ) were found to be 5.65 × 10–8 mol l–1 (0.019 mg l–1) and 1.88 × 10–7 mol l–1 (0.064 mg l–1), respectively. The method was successfully applied to assay the drug in tablets, human serum and human urine with good recoveries at about 100%.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Agrahari, Sunil K., Sangita D. Kumar, and Ashwini K. Srivastava. "Development of a Carbon Paste Electrode Containing Benzo-15-Crown-5 for Trace Determination of the Uranyl Ion by Using a Voltammetric Technique." Journal of AOAC INTERNATIONAL 92, no. 1 (January 1, 2009): 241–47. http://dx.doi.org/10.1093/jaoac/92.1.241.

Повний текст джерела
Анотація:
Abstract The interaction of macrocyclic compounds like crown ethers and UO22+ has been studied by electrochemical methods. A modified carbon paste electrode incorporating benzo-15-crown-5 (B15C5) was used to evaluate the electron transfer reaction of UO22+ by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Electrochemical impedance studies showed that charge transfer resistance was less for the B15C5-modified electrode than for the plain carbon paste electrode (PCPE). On the basis of these observations, a UO22+-sensitive crown ether chemically modified electrode (CME) for trace analysis was fabricated and investigated in aqueous solutions. It was found that a 5 B15C5CME for UO22+ showed a better voltammetric response than did the PCPE. UO22+ could be quantified at sub-μg/mL levels by differential pulse voltammetry with a detection limit of 0.03 μg/mL. By differential pulse adsorptive stripping voltammetry, UO22+ could be quantified in the working range of 0.002-0.2 μg/mL, with a detection limit of 1.1 μg/L. Simultaneous determination of UO22+, Pb2+, and Cd2+ was possible. The method was successfully applied to the determination of UO22+ in synthetic, as well as real, samples; the results were found to be comparable to those obtained by inductively coupled plasma-atomic emission spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ioannou, Andrea, Despina Alexiadou, Sofia Kouidou, Stella Girousi, and Anastasios Voulgaropoulos. "Use of Adsorptive Transfer Stripping Voltammetry for Analyzing Variations of Cytosine Methylation in DNA." Electroanalysis 21, no. 24 (December 2009): 2685–92. http://dx.doi.org/10.1002/elan.200900274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Adam, Vojtech, Sona Krizkova, Ondrej Zitka, Libuse Trnkova, Jitka Petrlova, Miroslava Beklova, and Rene Kizek. "Determination of apo-Metallothionein Using Adsorptive Transfer Stripping Technique in Connection with Differential Pulse Voltammetry." Electroanalysis 19, no. 2-3 (January 2007): 339–47. http://dx.doi.org/10.1002/elan.200603738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paleček, Emil. "Adsorptive transfer stripping voltammetry: Determination of nanogram quantities of DNA immobilized at the electrode surface." Analytical Biochemistry 170, no. 2 (May 1988): 421–31. http://dx.doi.org/10.1016/0003-2697(88)90654-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Skeva, Elina, and Stella Girousi. "A study of the antioxidative behavior of phenolic acids, in aqueous herb extracts, using a dsDNA biosensor." Open Chemistry 10, no. 4 (August 1, 2012): 1280–89. http://dx.doi.org/10.2478/s11532-012-0051-0.

Повний текст джерела
Анотація:
AbstractElectrochemical DNA biosensors are promising tools for the fast, inexpensive and simple in vitro analysis for the determination of free radicals and antioxidants. High concentrations of antioxidants in such compounds as phenolic acids and plant extracts, act as free radical terminators which reduce the effect of the oxidative dam-age on DNA. The electrochemical behavior of three representative phenolic acids, caffeic acid, gallic acid and trolox were studied by cyclic voltammetry. Moreover, the determination of the above antioxidants under the optimized conditions (scan rate, deposition potential and time) using differential pulse voltammetry was also investigated. In vitro studies focused on their antioxidative effect were performed by adsorptive transfer stripping voltammetry and dsDNA biosensor. Using Fenton’s system, with FeSO4 and H2O2 was chosen as a strong oxidative system. This biosensor was applied as a screening antioxidant test in order to estimate the antioxidant capacity of aqueous herb extracts.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sasal, Agnieszka, Katarzyna Tyszczuk-Rotko, Magdalena Wójciak, and Ireneusz Sowa. "First Electrochemical Sensor (Screen-Printed Carbon Electrode Modified with Carboxyl Functionalized Multiwalled Carbon Nanotubes) for Ultratrace Determination of Diclofenac." Materials 13, no. 3 (February 8, 2020): 781. http://dx.doi.org/10.3390/ma13030781.

Повний текст джерела
Анотація:
A simple, sensitive and time-saving differential-pulse adsorptive stripping voltammetric (DPAdSV) procedure using a screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes (SPCE/MWCNTs-COOH) for the determination of diclofenac (DF) is presented. The sensor was characterized using optical profilometry, SEM, and cyclic voltammetry (CV). The use of carboxyl functionalized MWCNTs as a SPCE modifier improved the electron transfer process and the active surface area of sensor. Under optimum conditions, very sensitive results were obtained with a linear range of 0.1–10.0 nmol L−1 and a limit of detection value of 0.028 nmol L−1. The SPCE/MWCNTs-COOH also exhibited satisfactory repeatability, reproducibility, and selectivity towards potential interferences. Moreover, for the first time, the electrochemical sensor allows determining the real concentrations of DF in environmental water samples without sample pretreatment steps.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Koniari, Argyri, and Antonis Avranas. "Adsorption of cetyltrimethylammonium bromide and cetyldimethylbenzylammonium chloride on a hanging mercury electrode studied by adsorptive transfer stripping voltammetry." Journal of Colloid and Interface Science 354, no. 1 (February 2011): 275–81. http://dx.doi.org/10.1016/j.jcis.2010.09.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Abdel-Hamid, Refat, Hussein M. El-Sagher, and Mostafa K. Rabia. "Electrochemical studies on sulphonephthaleins. Part 3. Kinetics of electrochemical reduction of xylenol orange and square-wave adsorptive cathodic stripping voltammetry of its lanthanum complex." Canadian Journal of Chemistry 75, no. 2 (February 1, 1997): 162–68. http://dx.doi.org/10.1139/v97-019.

Повний текст джерела
Анотація:
The electrochemical reduction behaviour of xylenol orange, XO, in aqueous medium was studied over a pH range of 2.3–9.6 at a hanging mercury drop electrode, HMDE, on the basis of cyclic voltammetric, and double-potential step chronoamperometric and chronocoulometric data. The experimental results indicate that in acid medium (pH 2.28) the reduction of XO proceeds via an ECEC, first-order mechanism giving a single two-electron diffusion-controlled cyclic voltammetric wave. It was concluded that the rate-determining step is the protonation of the protonated anion intermediate to the final product, with rate constant k2 of 0.26 s−1. At pH 7.25 the reduction follows an ECE kinetics along two cyclic voltammetric waves in which the first wave was attributed to an EC, first-order process and the second wave to an irreversible electron transfer step, E. On addition of lanthanum(III) to xylenol orange, it forms 1:1 and 1.2 La(III)–XO chelates, which are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free XO. The adsorptive cathodic stripping voltammetry, ACSV, of these chelates was studied using the square-wave, SW, method. It was found that the SW-ACSV of La(III)–XO can be applied to the determination of lanthanum at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed. Keywords: electrochemical, reduction mechanism, xylenol orange, lanthanum complex, double potential step chronoamperometry and chronocoulometry, stripping voltammetric determination.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Křížková, S., O. Zítka, V. Adam, M. Beklová, A. Horna, Z. Svobodová, B. Sures, L. Trnková, L. Zeman, and R. Kizek. "Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues." Czech Journal of Animal Science 52, No. 5 (January 7, 2008): 143–48. http://dx.doi.org/10.17221/2232-cjas.

Повний текст джерела
Анотація:
In the present paper, we report on the use of adsorptive transfer stripping technique in connection with chronopotentiometric stripping analysis for metallothionein determination and of differential pulse anodic stripping voltammetry for lead detection in tissues of wild perch (<i>Perca fluviatilis</i>, <i>n</i> = 6) from the Svratka River in Brno, Czech Republic. Primarily, we determined the content of MT in tissues (muscles, gonads, liver and spleen) of perch. We measured the highest content of MT in spleen and liver (100&minus;350 ng MT per gram of fresh weight). We assume that the content of MT determined in perch tissues is probably related with the age of the fish and, therefore, with their exposition to heavy metals naturally occurring in the Svratka River. We detected a lead concentration in the tissues of one perch. It clearly follows from the results that the content of MT well correlates with the concentration of lead.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Gherghi, Ioanna Ch, Stella Th Girousi, Anastasios Voulgaropoulos, and Roxani Tzimou-Tsitouridou. "Adsorptive transfer stripping voltammetry applied to the study of the interaction between DNA and actinomycin D." International Journal of Environmental Analytical Chemistry 84, no. 11 (September 15, 2004): 865–74. http://dx.doi.org/10.1080/03067310310001626722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Serpi, Constantina, Anastasios Voulgaropoulos, and Stella Girousi. "Electrochemical study of dsDNA on carbon nanotubes paste electrodes applying cyclic and differential pulse voltammetry." Open Chemistry 11, no. 3 (March 1, 2013): 413–23. http://dx.doi.org/10.2478/s11532-012-0180-5.

Повний текст джерела
Анотація:
AbstractAbstract Carbon nanotubes paste electrodes (CNTPEs) in combination with adsorptive transfer stripping voltammetry are shown to be very suitable for the determination of calf thymus double-stranded DNA (dsDNA). The performance of three types of multi-walled carbon nanotubes paste electrodes (MWCNTPEs) is investigated. The effects of surface pre-treatment and accumulation conditions on the adsorption and electrooxidation of the dsDNA at MWCNTPEs are also described. The results indicate that the electroactivity inherent to carbon nanotubes/paste electrodes allows a large enhancement of the guanine oxidation signal compared to that obtained at the conventional carbon paste electrodes (CPEs). Moreover, the extent of the enhancement dependents on the type of MWCNTs incorporated into the paste. Based on the signal of guanine, under optimal conditions, very low levels of dsDNA can be detected following short accumulation times for all three types of MWCNTPEs (MWCNTPE1, MWCNTPE2, MWCNTPE3), with detection limits of 2.64 mg L−1, 2.02 mg L−1 and 1.46 mg L−1, respectively. Additionally, the dsDNA isolated from rat liver tissues is determined by use of the previously mentioned MWCNTPEs. Graphical abstract
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Paleček, Emil. "Adsorptive transfer stripping voltammetry: effect of electrode potential on the structure of DNA adsorbed at the mercury surface." Journal of Electroanalytical Chemistry 343, no. 1-2 (August 1992): 71–83. http://dx.doi.org/10.1016/0022-0728(92)85078-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Paleček, Emil. "Adsorptive transfer stripping voltammetry: Effect of electrode potential on the structure of DNA adsorbed at the mercury surface." Bioelectrochemistry and Bioenergetics 28, no. 1-2 (August 1992): 71–83. http://dx.doi.org/10.1016/0302-4598(92)80004-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Demir, Ersin, and Hulya Silah. "Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation." Chemosensors 8, no. 2 (March 30, 2020): 25. http://dx.doi.org/10.3390/chemosensors8020025.

Повний текст джерела
Анотація:
A novel highly selective, sensitive and simple analytical technique was recommended for the investigation of anthelmintic veterinary drug oxyclozanide based on square wave anodic stripping voltammetry (SWASV) by using a carbon paste electrode (CPE). According to the cyclic voltammetric data, the oxidation and electron transfer processes of oxyclozanide were found as irreversible and adsorption-controlled, respectively. The voltammetric anodic peak response was characterized with respect to pH, accumulation potential, accumulation time, frequency and pulse amplitude, etc. Under these optimized experimental conditions, the anodic peak density of oxyclozanide was linear to oxyclozanide concentrations in the range from 0.058 to 4.00 mg/L. The described electrochemical method was successfully carried out for the oxyclozanide in pharmaceutical formulation and tap water with mean percentage recovery of 101.5 % and 102.2 %, respectively. The results of pharmaceutical formulation studies were statistically compared to the high-performance liquid chromatographic method.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Oliveira, Geiser, Bruno Janegitz, Valtencir Zucolotto, and Orlando Fatibello-Filho. "Differential pulse adsorptive stripping voltammetric determination of methotrexate using a functionalized carbon nanotubes-modified glassy carbon electrode." Open Chemistry 11, no. 11 (November 1, 2013): 1837–43. http://dx.doi.org/10.2478/s11532-013-0305-5.

Повний текст джерела
Анотація:
AbstractA glassy carbon electrode (GC) containing multiwalled functionalized carbon nanotubes (MWCNTs) immobilized within a dihexadecylhydrogenphosphate film (DHP) is proposed as a nanostructured platform for determination of methotrexate (MTX) concentration (a drug used in cancer treatment) using differential pulse adsorptive stripping voltammetry (DPAdSV). The voltammograms for a MTX solution using MWCNTs-DHP/GC electrode presented an oxidation peak potential at 0.98 V vs. Ag/AgCl (3.0 mol L−1 KCl) in a 0.1 mol L−1 sulphuric acid. The apparent heterogeneous electron transfer rate constant of 0.46 s−1 was calculated. The recovery area of 2.62×10−9 mol cm2 was also obtained. Under the optimal experimental conditions, the analytical curve was linear in the MTX concentration range from 5.0×10−8 to 5.0×10−6 mol L−1, with a detection limit of 3.3×10−8 mol L−1. The MWCNTs-DHP/GC electrode can be easily prepared and was applied for the determination of MTX in pharmaceutical formulations, with results similar to those obtained using a high-performance liquid chromatography comparative method.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kozak, Jędrzej, Katarzyna Tyszczuk-Rotko, Magdalena Wójciak, Ireneusz Sowa, and Marek Rotko. "First Screen-Printed Sensor (Electrochemically Activated Screen-Printed Boron-Doped Diamond Electrode) for Quantitative Determination of Rifampicin by Adsorptive Stripping Voltammetry." Materials 14, no. 15 (July 29, 2021): 4231. http://dx.doi.org/10.3390/ma14154231.

Повний текст джерела
Анотація:
In this paper, a screen-printed boron-doped electrode (aSPBDDE) was subjected to electrochemical activation by cyclic voltammetry (CV) in 0.1 M NaOH and the response to rifampicin (RIF) oxidation was used as a testing probe. Changes in surface morphology and electrochemical behaviour of RIF before and after the electrochemical activation of SPBDDE were studied by scanning electron microscopy (SEM), CV and electrochemical impedance spectroscopy (EIS). The increase in number and size of pores in the modifier layer and reduction of charge transfer residence were likely responsible for electrochemical improvement of the analytical signal from RIF at the SPBDDE. Quantitative analysis of RIF by using differential pulse adsorptive stripping voltammetry in 0.1 mol L−1 solution of PBS of pH 3.0 ± 0.1 at the aSPBDDE was carried out. Using optimized conditions (Eacc of −0.45 V, tacc of 120 s, ΔEA of 150 mV, ν of 100 mV s−1 and tm of 5 ms), the RIF peak current increased linearly with the concentration in the four ranges: 0.002–0.02, 0.02–0.2, 0.2–2.0, and 2.0–20.0 nM. The limits of detection and quantification were calculated at 0.22 and 0.73 pM. The aSPBDDE showed satisfactory repeatability, reproducibility, and selectivity towards potential interferences. The applicability of the aSPBDDE for control analysis of RIF was demonstrated using river water samples and certified reference material of bovine urine.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Masarik, Michal, Rene Kizek, Karl J. Kramer, Sabina Billova, Marie Brazdova, Jan Vacek, Michele Bailey, Frantisek Jelen, and John A. Howard. "Application of Avidin−Biotin Technology and Adsorptive Transfer Stripping Square-Wave Voltammetry for Detection of DNA Hybridization and Avidin in Transgenic Avidin Maize." Analytical Chemistry 75, no. 11 (June 2003): 2663–69. http://dx.doi.org/10.1021/ac020788z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Vacek, Jan, Luděk Havran, and Miroslav Fojta. "The reduction of doxorubicin at a mercury electrode and monitoring its interaction with DNA using constant current chronopotentiometry." Collection of Czechoslovak Chemical Communications 74, no. 11-12 (2009): 1727–38. http://dx.doi.org/10.1135/cccc2009512.

Повний текст джерела
Анотація:
In this report, voltammetry with linear scan and chronopotentiometric stripping (CPS) with constant current were used for the analysis of doxorubicin (DOX) at a hanging mercury drop electrode (HMDE). CPS was used for the study of DOX in situ electrochemical reduction in adsorbed state and for ex situ (adsorptive transfer) analysis of the drug. For the first time, CPS was used to study the reversible reduction of the DOX quinine moiety at –0.45 V (vs Ag|AgCl|3 M KCl) as well as electrode processes giving rise to an irreversible signal around –1.45 V at the HMDE in 0.2 M acetate or Britton–Robinson buffers at different pH values. The dependence of the latter signal on pH revealed involvement of protonation equilibria; however, neither CV nor CPS data confirmed the catalytic character of the electrode reaction previously suggested by other authors. The CPS method was also applied to monitor the DOX interaction with double- (ds) and single-stranded (ss) DNA. In the presence of dsDNA, more pronounced changes in DOX signal intensity were observed, in agreement with a strong intercalation of the DOX redox centre into the DNA double helix.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

OUYANG, RUIZHUO, KAI FENG, YONGFU SU, TIANYU ZONG, XIA ZHOU, TIAN LEI, PENGPENG JIA, et al. "ADSORPTIVE STRIPPING DETERMINATION OF TRACE NICKEL USING BISMUTH MODIFIED MESOPOROUS CARBON COMPOSITE ELECTRODE." Surface Review and Letters 24, no. 07 (August 15, 2017): 1750094. http://dx.doi.org/10.1142/s0218625x17500949.

Повний текст джерела
Анотація:
Novel bismuth nanoparticle-modified mesoporous carbon (MPC) was successfully prepared on a glassy carbon electrode (Bi@MPC/GCE) for the adsorptive stripping voltammetric determination of nickel by complexing with dimethylglyoxime (DMG). The presence of MPC obviously improved the properties of Bi particles like the electron transfer ability, particle size and hydrophicility, important parameters to achieve preferable analytical performances of Bi@MPC/GCE toward Ni(II). The best electrochemical behaviors of Bi@MPC/GCE was obtained for the stripping determination of Ni(II), compared with electrodes individually modified with Bi and MPC. The synergic effect between metallic Bi and ordered MPC (forming a 3D array like Bi microelectrodes) made major contribution to such improved electrochemical properties of Bi@MPC/GCE for Ni(II) sensing. The good linear analytical curve was achieved in a Ni(II) concentration range from 0.1[Formula: see text][Formula: see text]M to 5.0[Formula: see text][Formula: see text]M with a correlation coefficient of 0.9995. The detection limit and sensitivity were calculated to be 1.2[Formula: see text]nM ([Formula: see text]) and 1410[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text], respectively. The new method was successfully applied to Ni(II) determination in soybean samples with recoveries higher than 99% and proved to be a simple, efficient alternative for Ni(II) monitoring in real samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Sierra, Tania, Silvia Dortez, María Cristina González, F. Javier Palomares, Agustin G. Crevillen та Alberto Escarpa. "Disposable carbon nanotube scaffold films for fast and reliable assessment of total α1-acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry". Analytical and Bioanalytical Chemistry 411, № 9 (15 жовтня 2018): 1887–94. http://dx.doi.org/10.1007/s00216-018-1419-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yardım, Yavuz, Abdulkadir Levent, Ertuğrul Keskin, and Zühre Şentürk. "Voltammetric behavior of benzo[a]pyrene at boron-doped diamond electrode: A study of its determination by adsorptive transfer stripping voltammetry based on the enhancement effect of anionic surfactant, sodium dodecylsulfate." Talanta 85, no. 1 (July 2011): 441–48. http://dx.doi.org/10.1016/j.talanta.2011.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kerekovic, Irena, Stjepan Milardovic, Marina Palcic, and Zorana Grabaric. "Characterization of cysteamine self assembled on gold functionalized with nitrilotriacetic acid and evaluation of copper(II) binding capacity with adsorption transfer stripping voltammetry." Journal of Electroanalytical Chemistry 724 (June 2014): 103–10. http://dx.doi.org/10.1016/j.jelechem.2014.04.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Flores, Juana Rodriguez, Richard O'kennedy, and Malcolm R. Smyth. "Adsorptive Stripping Voltammetry of Phytohemagglutinin." Analytical Letters 21, no. 2 (February 1988): 211–23. http://dx.doi.org/10.1080/00032718808055747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Tan, Xuecai, Jingbo Hu, and Qilong Li. "Adsorptive Stripping Voltammetry of Bleomycin." Analyst 122, no. 9 (1997): 991–94. http://dx.doi.org/10.1039/a700436b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Stará, Věra, and Miloslav Kopanica. "Cathodic stripping voltammetry and adsorptive stripping voltammetry of selenium(IV)." Analytica Chimica Acta 208 (1988): 231–36. http://dx.doi.org/10.1016/s0003-2670(00)80750-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Fogg, Arnold G. "Adsorptive stripping voltammetry or cathodic stripping voltammetry? Methods of accumulation and determination in stripping voltammetry." Analytical Proceedings including Analytical Communications 31, no. 10 (1994): 313. http://dx.doi.org/10.1039/ai9943100313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Barek, Jiri, Karolina Peckova, and Vlastimil Vyskocil. "Adsorptive Stripping Voltammetry of Environmental Carcinogens." Current Analytical Chemistry 4, no. 3 (July 1, 2008): 242–49. http://dx.doi.org/10.2174/157341108784911325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

SAWAMOTO, Hiromiti. "Adsorptive stripping voltammetry of metal ions." Bunseki kagaku 48, no. 2 (1999): 137–50. http://dx.doi.org/10.2116/bunsekikagaku.48.137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

SAWAMOTO, Hiromiti. "Adsorptive stripping voltammetry of vitamin B12." Bunseki kagaku 43, no. 4 (1994): 347–50. http://dx.doi.org/10.2116/bunsekikagaku.43.347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bobrowski, Andrzej, and Jerzy Zarębski. "Catalytic Systems in Adsorptive Stripping Voltammetry." Electroanalysis 12, no. 15 (October 2000): 1177–86. http://dx.doi.org/10.1002/1521-4109(200010)12:15<1177::aid-elan1177>3.0.co;2-u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kalvoda, R., and Miloslav Kopanica. "Adsorptive stripping voltammetry in trace analysis." Pure and Applied Chemistry 61, no. 1 (January 1, 1989): 97–112. http://dx.doi.org/10.1351/pac198961010097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Buckley, Eileen, Malcolm R. Smyth, Juana Rodriguez Flores, and Constant M. G. van den Berg. "Adsorptive stripping voltammetry—a versatile technique." Anal. Proc. 25, no. 8 (1988): 263–66. http://dx.doi.org/10.1039/ap9882500263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Wang, Joseph, and Jianmin Lu. "Adsorptive stripping voltammetry of trace thallium." Analytica Chimica Acta 282, no. 2 (October 1993): 329–33. http://dx.doi.org/10.1016/0003-2670(93)80218-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gratteri, P., S. Furlanetto, S. Pinzauti, E. La Porta, P. Mura, and G. Santoni. "Adsorptive stripping voltammetry for thiomersal assay." Journal of Pharmaceutical and Biomedical Analysis 12, no. 2 (February 1994): 273–76. http://dx.doi.org/10.1016/0731-7085(94)90039-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bobrowski, Andrzej, and Jerzy Zarebski. "Catalytic Adsorptive Stripping Voltammetry at Film Electrodes." Current Analytical Chemistry 4, no. 3 (July 1, 2008): 191–201. http://dx.doi.org/10.2174/157341108784911389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

SOHN, SE CHUL, TAE YOON EOM, YEONG KEONG HA, and KI-SUK JUNG. "ADSORPTIVE STRIPPING VOLTAMMETRY OF INDIUM MORIN COMPLEX." Analytical Sciences 7, Supple (1991): 1719–22. http://dx.doi.org/10.2116/analsci.7.supple_1719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Flores, Juana Rodriguez, Richard O'Kennedy, and Malcolm R. Smyth. "Adsorptive stripping voltammetry of bovine serum albumin." Analytica Chimica Acta 212 (1988): 355–58. http://dx.doi.org/10.1016/s0003-2670(00)84163-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

González, M. Jesús Gómez, Olga Domı́nguez Renedo, M. Asunción Alonso Lomillo, and M. Julia Arcos Martı́nez. "Determination of gallium by adsorptive stripping voltammetry." Talanta 62, no. 3 (February 27, 2004): 457–62. http://dx.doi.org/10.1016/j.talanta.2003.08.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Jelen, František, Miroslav Tomschik, and Emil Paleček. "Adsorptive stripping square-wave voltammetry of DNA." Journal of Electroanalytical Chemistry 423, no. 1-2 (February 1997): 141–48. http://dx.doi.org/10.1016/s0022-0728(96)04954-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gratteri, P., S. Pinzauti, E. La Porta, G. Papeschi, V. Cavrini, and G. Santoni. "Differential-pulse adsorptive stripping voltammetry of chlorhexidine." Analyst 116, no. 7 (1991): 723. http://dx.doi.org/10.1039/an9911600723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Stojanova, Kornelija, Rubin Gulaboski, Valentin Mirečeski, and Simka Petrovska-Jovanović. "Adsorptive Stripping Square-Wave Voltammetry of Creatine." Analytical Letters 32, no. 15 (January 1999): 2937–50. http://dx.doi.org/10.1080/00032719908543018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, Joseph, and Mojtaba Bonakdar. "Adsorptive/Extractive Stripping Voltammetry of 1,2,3,4-Tetrahydrocarbazole." Analytical Letters 18, no. 20 (January 1985): 2569–79. http://dx.doi.org/10.1080/00032718508064487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pedrero, María, F. Javier Manuel de Villena, José M. Pingarrón, and Luis M. Polo. "Determination of Dinoseb by adsorptive stripping voltammetry." Electroanalysis 3, no. 4-5 (May 1991): 419–22. http://dx.doi.org/10.1002/elan.1140030429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Malakhova, Natalia A., Albina V. Chernysheva, and Khiena Z. Brainina. "Adsorptive stripping voltammetry of chromium 1,5-diphenylcarbazonate." Electroanalysis 3, no. 8 (October 1991): 803–14. http://dx.doi.org/10.1002/elan.1140030814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії