Добірка наукової літератури з теми "Adversarial Deepfake"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Adversarial Deepfake".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Adversarial Deepfake"
Lad, Sumit. "Adversarial Approaches to Deepfake Detection: A Theoretical Framework for Robust Defense." Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 6, no. 1 (2024): 46–58. http://dx.doi.org/10.60087/jaigs.v6i1.225.
Повний текст джерелаAbbasi, Maryam, Paulo Váz, José Silva, and Pedro Martins. "Comprehensive Evaluation of Deepfake Detection Models: Accuracy, Generalization, and Resilience to Adversarial Attacks." Applied Sciences 15, no. 3 (2025): 1225. https://doi.org/10.3390/app15031225.
Повний текст джерелаGarcia, Jan Mark. "Exploring Deepfakes and Effective Prevention Strategies: A Critical Review." Psychology and Education: A Multidisciplinary Journal 33, no. 1 (2025): 93–96. https://doi.org/10.70838/pemj.330107.
Повний текст джерелаZhuang, Zhong, Yoichi Tomioka, Jungpil Shin, and Yuichi Okuyama. "PGD-Trap: Proactive Deepfake Defense with Sticky Adversarial Signals and Iterative Latent Variable Refinement." Electronics 13, no. 17 (2024): 3353. http://dx.doi.org/10.3390/electronics13173353.
Повний текст джерелаHuang, Hao, Yongtao Wang, Zhaoyu Chen, et al. "CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 989–97. http://dx.doi.org/10.1609/aaai.v36i1.19982.
Повний текст джерелаChen, Junyi, Minghao Yang, and Kaishen Yuan. "A Review of Deepfake Detection Techniques." Applied and Computational Engineering 117, no. 1 (2025): 165–74. https://doi.org/10.54254/2755-2721/2025.20955.
Повний текст джерелаGhariwala, Love. "Impact of Deepfake Technology on Social Media: Detection, Misinformation and Societal Implications." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 2982–86. https://doi.org/10.22214/ijraset.2025.67997.
Повний текст джерелаNoreen, Iram, Muhammad Shahid Muneer, and Saira Gillani. "Deepfake attack prevention using steganography GANs." PeerJ Computer Science 8 (October 20, 2022): e1125. http://dx.doi.org/10.7717/peerj-cs.1125.
Повний текст джерелаShukla, Dheeraj. "Deep Fake Face Detection Using Deep Learning." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem50976.
Повний текст джерелаOmkar, Ajit Awadhut, and Prof. Priya Dhadawe Asst. "Deep fakes and Mitigation Strategies." International Journal of Advance and Applied Research S6, no. 23 (2025): 121–28. https://doi.org/10.5281/zenodo.15194884.
Повний текст джерелаКниги з теми "Adversarial Deepfake"
Lanham, Micheal. Generating a New Reality: From Autoencoders and Adversarial Networks to Deepfakes. Apress L. P., 2021.
Знайти повний текст джерелаUrcuqui López, Christian Camilo, and Andrés Navarro Cadavid, eds. Ciberseguridad: los datos tienen la respuesta. Universidad Icesi, 2022. http://dx.doi.org/10.18046/eui/ee.4.2022.
Повний текст джерелаЧастини книг з теми "Adversarial Deepfake"
Khan, Sarwar, Jun-Cheng Chen, Wen-Hung Liao, and Chu-Song Chen. "Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning." In MultiMedia Modeling. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53311-2_37.
Повний текст джерелаChen, Zengqiang, Xudong Wang, and Yuezun Li. "Enhancing Deepfake Detection via Adversarial Generative Learning." In Lecture Notes in Computer Science. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-1068-6_22.
Повний текст джерелаVo, Ngan Hoang, Khoa D. Phan, Anh-Duy Tran, and Duc-Tien Dang-Nguyen. "Adversarial Attacks on Deepfake Detectors: A Practical Analysis." In MultiMedia Modeling. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98355-0_27.
Повний текст джерелаVasoya, Yash, Dhairya Patel, Kanubhai K. Patel, Rutvij H. Jhaveri, Digvijaysinh M. Rathod, and Jigarkumar Shah. "Detecting Deepfake Images with Enhanced Generative Adversarial Networks." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88039-1_8.
Повний текст джерелаCoccomini, Davide Alessandro, Roberto Caldelli, Giuseppe Amato, Fabrizio Falchi, and Claudio Gennaro. "Adversarial Magnification to Deceive Deepfake Detection Through Super Resolution." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74627-7_41.
Повний текст джерелаFernandes, Steven Lawrence, and Sumit Kumar Jha. "Adversarial Attack on Deepfake Detection Using RL Based Texture Patches." In Computer Vision – ECCV 2020 Workshops. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66415-2_14.
Повний текст джерелаRemya Revi, K., K. R. Vidya, and M. Wilscy. "Detection of Deepfake Images Created Using Generative Adversarial Networks: A Review." In Transactions on Computational Science and Computational Intelligence. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49500-8_3.
Повний текст джерелаIrfan, Muhammad, Myung J. Lee, and Daiki Nobayashi. "Robust Deepfake Detection and Resilient Adversarial Image Reconstruction with Reduced Features Set." In Lecture Notes on Data Engineering and Communications Technologies. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72322-3_15.
Повний текст джерелаGautam, Abhishek, and Awadhesh Kumar Singh. "Deep Convolutional Neural Network Implementation for Detecting Generative Adversarial Network Generated Deepfake Videos." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-7384-8_44.
Повний текст джерелаGaur, Loveleen, Mohan Bhandari, and Tanvi Razdan. "Development of Image Translating Model to Counter Adversarial Attacks." In DeepFakes. CRC Press, 2022. http://dx.doi.org/10.1201/9781003231493-5.
Повний текст джерелаТези доповідей конференцій з теми "Adversarial Deepfake"
Mohamed, Saifeldin Nasser, Ahmed Amr Ahmed, and Wael Elsersy. "FGSM Adversarial Attack Detection On Deepfake Videos." In 2024 Intelligent Methods, Systems, and Applications (IMSA). IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652708.
Повний текст джерелаFarooq, Muhammad Umar, Awais Khan, Kutub Uddin, and Khalid Mahmood Malik. "Transferable Adversarial Attacks on Audio Deepfake Detection." In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW). IEEE, 2025. https://doi.org/10.1109/wacvw65960.2025.00178.
Повний текст джерелаYadav, Anurag, Vishwas Singh, David, and Shailendra Narayan Singh. "Detection of DeepFake using Generative Adversarial Networks (GANs)." In 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0. IEEE, 2025. https://doi.org/10.1109/otcon65728.2025.11070449.
Повний текст джерелаGaldi, Chiara, Michele Panariello, Massimiliano Todisco, and Nicholas Evans. "2D-Malafide: Adversarial Attacks Against Face Deepfake Detection Systems." In 2024 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, 2024. https://doi.org/10.1109/biosig61931.2024.10786754.
Повний текст джерелаMeng, Xiangtao, Li Wang, Shanqing Guo, Lei Ju, and Qingchuan Zhao. "AVA: Inconspicuous Attribute Variation-based Adversarial Attack bypassing DeepFake Detection." In 2024 IEEE Symposium on Security and Privacy (SP). IEEE, 2024. http://dx.doi.org/10.1109/sp54263.2024.00155.
Повний текст джерелаZeng, Siding, Jiangyan Yi, Jianhua Tao, et al. "Adversarial Training and Gradient Optimization for Partially Deepfake Audio Localization." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10890470.
Повний текст джерелаN, Pallavi, Pallavi T P, Sushma Bylaiah, and Goutam R. "Adversarial Robustness in DeepFake Detection: Enhancing Model Resilience with Defensive Strategies." In 2024 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA). IEEE, 2024. https://doi.org/10.1109/icicyta64807.2024.10913151.
Повний текст джерелаYang, Wang, Lingchen Zhao, and Dengpan Ye. "Reputation Defender: Local Black-Box Adversarial Attack against Image-Translation-Based DeepFake." In 2024 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2024. http://dx.doi.org/10.1109/icme57554.2024.10687690.
Повний текст джерелаNguyen-Le, Hong-Hanh, Van-Tuan Tran, Dinh-Thuc Nguyen, and Nhien-An Le-Khac. "D-CAPTCHA++: A Study of Resilience of Deepfake CAPTCHA under Transferable Imperceptible Adversarial Attack." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650401.
Повний текст джерелаAin, Qurat Ul, Ali Javed, Khalid Mahmood Malik, and Aun Irtaza. "Exposing the Limits of Deepfake Detection using novel Facial mole attack: A Perceptual Black- Box Adversarial Attack Study." In 2024 IEEE International Conference on Image Processing (ICIP). IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10647949.
Повний текст джерелаЗвіти організацій з теми "Adversarial Deepfake"
Hwang, Tim. Deepfakes: A Grounded Threat Assessment. Center for Security and Emerging Technology, 2020. http://dx.doi.org/10.51593/20190030.
Повний текст джерела