Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: AFM nanomanipulation.

Статті в журналах з теми "AFM nanomanipulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-44 статей у журналах для дослідження на тему "AFM nanomanipulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

TIAN, Xiaojun. "Review of AFM Based Robotic Nanomanipulation." Journal of Mechanical Engineering 45, no. 06 (2009): 14. http://dx.doi.org/10.3901/jme.2009.06.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lal, R., and S. A. John. "Biological applications of atomic force microscopy." American Journal of Physiology-Cell Physiology 266, no. 1 (1994): C1—C21. http://dx.doi.org/10.1152/ajpcell.1994.266.1.c1.

Повний текст джерела
Анотація:
The newly developed atomic force microscope (AFM) provides a unique window to the microworld of cells, subcellular structures, and biomolecules. The AFM can image the three-dimensional structure of biological specimens in a physiological environment. This enables real-time biochemical and physiological processes to be monitored at a resolution similar to that obtained for the electron microscope. The process of image acquisition is such that the AFM can also measure forces at the molecular level. In addition, the AFM can interact with the sample, thereby manipulating the molecules in a defined
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shahmoradi Zavareh, Seyed Abbas, Hamid Akbari Moayyer, and Mohammad Amin Ahouei. "Experimental Manipulation of Gold Nano-Particles by Atomic Force Microscope and Investigating Effect of Various Working Parameters." Advanced Materials Research 829 (November 2013): 831–35. http://dx.doi.org/10.4028/www.scientific.net/amr.829.831.

Повний текст джерела
Анотація:
Due to involvement of various fields of engineering and bio researchers in nanoprojects and their need in achieving certain layout of nanoparticles (NPs) in many research studies, considerable attention is paid to nanomanipulation nowadays. The present experimental study employs Atomic Force Microscope (AFM) in order to push gold nanoparticles on a highly flat mica surface. A silicon probe in contact mode is used to both image and manipulate nanoparticles and Topo and L-R images have been obtained to show the successes of manipulation when proper conditions are fulfilled. The effect of AFM par
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chang, Ming, C. H. Lin, and Juti Rani Deka. "Characterization and Manipulation of Boron Nanowire inside SEM." Key Engineering Materials 381-382 (June 2008): 31–34. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.31.

Повний текст джерела
Анотація:
Nanostructures materials have stimulated broad attention in the past decade because of their potential fundamental characteristics and its promising applications in nano electronic devices. In the present investigation, crystalline boron nanowires (BNWs) were synthesized by vapor liquid solid (VLS) technique and its mechanical properties were studied using a nanomanipulator inside a scanning electron microscope (SEM). Electron beam induced deposition (EBID) method was used to clamp boron nanowire to the AFM tips. The Young’s modulus of the NWs were determined from the buckling instability of N
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yuan, Shuai, Zhidong Wang, Ning Xi, Yuechao Wang, and Lianqing Liu. "AFM Tip Position Control in situ for Effective Nanomanipulation." IEEE/ASME Transactions on Mechatronics 23, no. 6 (2018): 2825–36. http://dx.doi.org/10.1109/tmech.2018.2868983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tian, Xiaojun, Yuechao Wang, Ning Xi, Lianqing Liu, Niandong Jiao, and Zaili Dong. "AFM Based MWCNT Nanomanipulation with Force and Visual Feedback." Journal of Nanoscience and Nanotechnology 9, no. 2 (2009): 1647–50. http://dx.doi.org/10.1166/jnn.2009.c223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mokaberi, B., and A. A. G. Requicha. "Compensation of Scanner Creep and Hysteresis for AFM Nanomanipulation." IEEE Transactions on Automation Science and Engineering 5, no. 2 (2008): 197–206. http://dx.doi.org/10.1109/tase.2007.895008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, G., N. Xi, M. Yu, and W. K. Fung. "Development of Augmented Reality System for AFM-Based Nanomanipulation." IEEE/ASME Transactions on Mechatronics 9, no. 2 (2004): 358–65. http://dx.doi.org/10.1109/tmech.2004.828651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ishisaki, Itsuhachi, Yuya Ohashi, Tatsuo Ushiki, and Futoshi Iwata. "Nanomanipulator Based on a High-Speed Atomic Force Microscopy." Key Engineering Materials 516 (June 2012): 396–401. http://dx.doi.org/10.4028/www.scientific.net/kem.516.396.

Повний текст джерела
Анотація:
We developed a real-time nanomanipulation system based on high-speed atomic force microscopy (HS-AFM). During manipulation, the operation of the manipulation is momentarily interrupted for a very short time for high-speed imaging; thus, the topographical image of the fabricated surface is periodically updated during the manipulation. By using a high-speed imaging technique, the interrupting time could be much reduced during the manipulation; as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. As for the high-speed imaging tec
Стилі APA, Harvard, Vancouver, ISO та ін.
10

YUAN, Shuai. "Implementation of Virtual Clap Based AFM Nanomanipulation Through Tip Positioning." Journal of Mechanical Engineering 50, no. 13 (2014): 142. http://dx.doi.org/10.3901/jme.2014.13.142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Li, Guangyong, Yucai Wang, and Lianqing Liu. "Drift Compensation in AFM-Based Nanomanipulation by Strategic Local Scan." IEEE Transactions on Automation Science and Engineering 9, no. 4 (2012): 755–62. http://dx.doi.org/10.1109/tase.2012.2211077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gnecco, Enrico. "A collisional model for AFM manipulation of rigid nanoparticles." Beilstein Journal of Nanotechnology 1 (December 22, 2010): 158–62. http://dx.doi.org/10.3762/bjnano.1.19.

Повний текст джерела
Анотація:
The trajectories of differently shaped nanoparticles manipulated by atomic force microscopy are related to the scan path of the probing tip. The direction of motion of the nanoparticles is essentially fixed by the distance b between consecutive scan lines. Well-defined formulas are obtained in the case of rigid nanospheres and nanowires. Numeric results are provided for symmetric nanostars. As a result, orienting the fast scan direction perpendicular to the desired direction of motion and reducing b well below the linear size of the particles turns out to be an efficient way to control the nan
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Landolsi, F., and F. H. Ghorbel. "Design of a duo-biomorph-based AFM cantilever suitable for nanomanipulation." Smart Materials and Structures 19, no. 6 (2010): 065028. http://dx.doi.org/10.1088/0964-1726/19/6/065028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bai, Huitian, and Sen Wu. "Deep-learning-based nanowire detection in AFM images for automated nanomanipulation." Nanotechnology and Precision Engineering 4, no. 1 (2021): 013002. http://dx.doi.org/10.1063/10.0003218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lytvyn, Peter M., Alexander A. Efremov, Oksana Lytvyn, et al. "Precise Manipulations with Asymmetric Nano-Objects Viscoelastically Bound to a Surface." Journal of Nano Research 39 (February 2016): 256–76. http://dx.doi.org/10.4028/www.scientific.net/jnanor.39.256.

Повний текст джерела
Анотація:
This work provides a review of commonly used approaches for fine manipulations with nanoobjects by means of scanning probe microscopes and describes an original alternative cost-effective nanomanipulation method. High precision manipulations are important for up-to-date technologies of nanoelectronic, molecular, hybrid and nanomechanical devices and sensor systems especially for the state of the art fundamental and applied researches. A new method to form nanoassemblies by using asymmetric nanoparticles fixed on the surface with the viscoelastic linker has been proposed, theoretically substant
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yang, Qinmin, and Jiangang Lu. "Robust Integral of NN and Error Sign Control for Nanomanipulation Using AFM." International Journal of Intelligent Mechatronics and Robotics 2, no. 2 (2012): 78–90. http://dx.doi.org/10.4018/ijimr.2012040106.

Повний текст джерела
Анотація:
This paper presents a novel control methodology for automatically manipulating nano particles on the substrate by using Atomic Force Microscope (AFM). The interactive forces and dynamics between the tip, particle and substrate are modeled and analyzed including the roughness effect of the substrate. Further, the control signal is designed to consist of the robust integral of a neural network (NN) output plus the sign of the error feedback signal multiplied with an adaptive gain. Using the NN-based adaptive force controller, the task of pushing nano particles is demonstrated in simulation envir
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ju, Dianming, Ying Zhang, Rui Li, Shuang Liu, Longhai Li, and Haitao Chen. "Mechanism-Independent Manipulation of Single-Wall Carbon Nanotubes with Atomic Force Microscopy Tip." Nanomaterials 10, no. 8 (2020): 1494. http://dx.doi.org/10.3390/nano10081494.

Повний текст джерела
Анотація:
Atomic force microscopy (AFM) based nanomanipulation can align the orientation and position of individual carbon nanotubes accurately. However, the flexible deformation during the tip manipulation modifies the original shape of these nanotubes, which could affect its electrical properties and reduce the accuracy of AFM nanomanipulation. Thus, we developed a protocol for searching the synergistic parameter combinations to push single-wall carbon nanotubes (SWCNTs) to maintain their original shape after manipulation as far as possible, without requiring the sample physical properties and the tip
Стилі APA, Harvard, Vancouver, ISO та ін.
18

WANG, XINYAN, HAIJUN YANG, HUABIN WANG, PENG WANG, and HAI LI. "VISUALIZATION EX SITU OF SINGLE DNA MOLECULES INCUBATION: A FIRST STEP FOR QUANTITATIVE ANALYSIS ON MULTI-SITE DEGRADATION AND ENZYMATIC KINETICS." Surface Review and Letters 16, no. 01 (2009): 79–85. http://dx.doi.org/10.1142/s0218625x09012329.

Повний текст джерела
Анотація:
Herein, we showed a different approach to directly single-molecule level visualization of the degradation of DNA in vitro tests using DNase I incubation based on high-resolution AFM imaging ex situ with fine relocation nanotechnology. A method of nanomanipulation termed as "modified dynamic molecular combing" (MDMC) was used to pattern DNA samples for further degradation and enzymatic kinetics. This strategy is potentially able to quantitatively address the mechanical-induced kinetic profiles of multi-site degradation of individual DNA molecules with very stable tension and strong immobilizati
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Nieradka, Konrad, Daniel Kopiec, Grzegorz Małozięć, et al. "Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation." Microelectronic Engineering 98 (October 2012): 676–79. http://dx.doi.org/10.1016/j.mee.2012.06.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Xie, Hui, Julien Vitard, Dogan Sinan Haliyo, and StÉphane Regnier. "Enhanced Accuracy of Force Application for AFM Nanomanipulation Using Nonlinear Calibration of Optical Levers." IEEE Sensors Journal 8, no. 8 (2008): 1478–85. http://dx.doi.org/10.1109/jsen.2008.920722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Shen, Yajing. "Effect of the Tip Size on AFM Cantilever Based Force Sensor." Journal of Sensors 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/926594.

Повний текст джерела
Анотація:
Atomic force microscopy (AFM) cantilever is a widely used end effector for precise force sensing and micro-nanomanipulation at small scale. However, in current researches, the effect of the cantilever tip on the force sensing and manipulation accuracy is rarely considered. In this paper, we investigate how the tip size of the end effector affects the measurement accuracy of the cell adhesion force. First, several end effectors with different tip sizes are fabricated from the same AFM cantilever via focused ion beam (FIB) etching. Then, the single cell detachment force is measured at the same e
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Maharaj, Dave, and Bharat Bhushan. "Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter." Nanoscale 6, no. 11 (2014): 5838–52. http://dx.doi.org/10.1039/c3nr06646k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ghattan Kashani, H., S. Shokrolahi, H. Akbari Moayyer, M. Shariat Panahi, and A. Shahmoradi Zavareh. "Experimental and numerical investigation of nanoparticle releasing in AFM nanomanipulation using high voltage electrostatic forces." Journal of Applied Physics 122, no. 3 (2017): 034305. http://dx.doi.org/10.1063/1.4995287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Korayem, M. H., and M. Zakeri. "Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM." International Journal of Advanced Manufacturing Technology 41, no. 7-8 (2008): 714–26. http://dx.doi.org/10.1007/s00170-008-1519-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Falvo, M. R., G. Clary, A. Helser, et al. "Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes." Microscopy and Microanalysis 4, no. 5 (1998): 504–12. http://dx.doi.org/10.1017/s1431927698980485.

Повний текст джерела
Анотація:
In many cases in experimental science, the instrument interface becomes a limiting factor in the efficacy of carrying out unusual experiments or prevents the complete understanding of the acquired data. We have developed an advanced interface for scanning probe microscopy (SPM) that allows intuitive rendering of data sets and natural instrument control, all in real time. The interface, called the nanoManipulator, combines a high-performance graphics engine for real-time data rendering with a haptic interface that places the human operator directly into the feedback loop that controls surface m
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Leite, F. L., E. C. Ziemath, O. N. Oliveira Jr., and P. S. P. Herrmann. "Adhesion Forces for Mica and Silicon Oxide Surfaces Studied by Atomic Force Spectroscopy (AFS)." Microscopy and Microanalysis 11, S03 (2005): 130–33. http://dx.doi.org/10.1017/s1431927605051068.

Повний текст джерела
Анотація:
The possibility of analyzing surfaces at the nanoscale provided by atomic force microscopy [1] (AFM) has been explored for various materials, including polymers [2], biological materials [3] and clays [4]. Further uses of AFMs involved nanomanipulation [5] and measurements of interaction forces, where the latter has been referred to as atomic force spectroscopy (AFS) [6]. Measurements of surface-surface interactions at the nanoscale are important because many materials have their properties changed at this range [7]. For samples in air, the interactions with the tip are a superimposition of va
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Duan, Na, Fei Long, Xinyan Wang, Bin Li, Jun Hu, and Yi Zhang. "Facilitating the pickup of individual DNA molecules by AFM nanomanipulation with tips mechanically worn on bare mica." Microscopy Research and Technique 75, no. 5 (2011): 638–42. http://dx.doi.org/10.1002/jemt.21104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fehler, Konstantin G., Anna P. Ovvyan, Lukas Antoniuk, et al. "Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity." Nanophotonics 9, no. 11 (2020): 3655–62. http://dx.doi.org/10.1515/nanoph-2020-0257.

Повний текст джерела
Анотація:
AbstractHybrid quantum photonics combines classical photonics with quantum emitters in a postprocessing step. It facilitates to link ideal quantum light sources to optimized photonic platforms. Optical cavities enable to harness the Purcell-effect boosting the device efficiency. Here, we postprocess a free-standing, crossed-waveguide photonic crystal cavity based on Si3N4 with SiV− center in nanodiamonds. We develop a routine that optimizes the overlap with the cavity electric field utilizing atomic force microscope (AFM) nanomanipulation to attain control of spatial and dipole alignment. Temp
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Nishida, Shuhei, Yutaka Funabashi, and Atsushi Ikai. "Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells." Ultramicroscopy 91, no. 1-4 (2002): 269–74. http://dx.doi.org/10.1016/s0304-3991(02)00108-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Tian, Xiao Jun, Yue Chao Wang, and Zai Li Dong. "A Study on the Assembly and Improvement of Electrical Contact between Carbon Nanotube and Microelectrode." Advanced Materials Research 60-61 (January 2009): 399–405. http://dx.doi.org/10.4028/www.scientific.net/amr.60-61.399.

Повний текст джерела
Анотація:
Nowadays research on nano-electronic device based on carbon nanotube (CNT) raises much interest among researchers, but in the fabrication process, crucial problems exist in making and improving the electrical contact between CNT and microelectrode. Here pulse gas alignment method, combined with nanomanipulation technology based on atomic force microscope (AFM) if necessary, is proposed for the first time to assemble and make electrical contact between CNT and microelectrode. After the assembly, a processing technique of applying sweeping voltages is performed for producing electrical current i
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dong, Lixin, Fumihito Arai, and Toshio Fukuda. "3-D Nanorobotic Manipulation of Nanometer-scale Objects." Journal of Robotics and Mechatronics 13, no. 2 (2001): 146–53. http://dx.doi.org/10.20965/jrm.2001.p0146.

Повний текст джерела
Анотація:
A set of nanorobotic manipulators with 4-DOF is constructed for 3-D nanomanipulation of nanometer-scale objects, which can work both under optical microscopes (OM) in air and inside the vacuum chamber of scanning electronic microscopes (SEM). Manipulators are actuated with PicomotorsTM (New Focus Inc.) with better than 30nm linear resolution (X, Y, Z stages actuated by Picomotors) and 2mrad rotary one. 2 atomic force microscope (AFM) cantilevers serve as the end-effectors, with 1 vertically installed (the axis of the cantilever tip is vertical to the light axis of OM or electronic beam of SEM)
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Damircheli, Mehrnoosh, and Babak Eslami. "Design of V-shaped cantilevers for enhanced multifrequency AFM measurements." Beilstein Journal of Nanotechnology 11 (October 6, 2020): 1525–41. http://dx.doi.org/10.3762/bjnano.11.135.

Повний текст джерела
Анотація:
As the application of atomic force microscopy (AFM) in soft matter characterization has expanded, the use of different types of cantilevers for these studies have also increased. One of the most common types of cantilevers used in soft matter imaging is V-shaped cantilevers due to their low normal spring constant. These types of cantilevers are also suitable for nanomanipulation due to their high lateral spring constants. The combination of low normal spring constant and high lateral spring constants makes V-shaped cantilevers promising candidates for imaging soft matter. Although these cantil
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Liu, Mei, Weilin Su, Xiangzheng Qin, et al. "Mechanical/Electrical Characterization of ZnO Nanomaterial Based on AFM/Nanomanipulator Embedded in SEM." Micromachines 12, no. 3 (2021): 248. http://dx.doi.org/10.3390/mi12030248.

Повний текст джерела
Анотація:
ZnO nanomaterials have been widely used in micro/nano devices and structure due to special mechanical/electrical properties, and its characterization is still deficient and challenging. In this paper, ZnO nanomaterials, including nanorod and nanowire are characterized by atomic force microscope (AFM) and nanomanipulator embedded in scanning electron microscope (SEM) respectively, which can manipulate and observe simultaneously, and is efficient and cost effective. Surface morphology and mechanical properties were observed by AFM. Results showed that the average Young’s modulus of ZnO nanorods
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Koitschev, A., S. Fink, U. Rexhausen, et al. "Das Rasterkraftmikroskop (AFM) Ein Nanomanipulator für biophysikalische Untersuchungen an Stereozilien der Sinneszellen der Kochlea." HNO 50, no. 5 (2002): 464–69. http://dx.doi.org/10.1007/s00106-001-0573-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Polyakov, Boris, Mikk Antsov, Sergei Vlassov, et al. "Mechanical properties of sol–gel derived SiO2 nanotubes." Beilstein Journal of Nanotechnology 5 (October 20, 2014): 1808–14. http://dx.doi.org/10.3762/bjnano.5.191.

Повний текст джерела
Анотація:
The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of line
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kim, Tae Gon, Antoine Pacco, Kurt Wostyn, et al. "Effects of Interfacial Strength and Dimension of Structures on Physical Cleaning Window." Solid State Phenomena 187 (April 2012): 123–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.123.

Повний текст джерела
Анотація:
Four different types of FINs; amorphous Si (a-Si), annealed a-Si, polycrystalline Si (poly-Si) and crystalline Si (c-Si) were used to investigate the effect of interfacial strength and the length of structures on the physical cleaning window by measuring their collapse forces by atomic force microscope (AFM). A transmission electron microscope (TEM) and a nanoneedle with a nanomanipulator in a scanning electron microscope (SEM) were employed in order to explain the different collapse behavior and their forces. Different fracture shapes and collapse forces of FINs could explain the influence of
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Korayem, M. H., M. Taheri, and S. D. Ghahnaviyeh. "Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles." Modern Physics Letters B 29, no. 22 (2015): 1550123. http://dx.doi.org/10.1142/s0217984915501237.

Повний текст джерела
Анотація:
Due to the more delicate nature of biological micro/nanoparticles, it is necessary to compute the critical force of manipulation. The modeling and simulation of reactions and nanomanipulator dynamics in a precise manipulation process require an exact modeling of cantilevers stiffness, especially the stiffness of dagger cantilevers because the previous model is not useful for this investigation. The stiffness values for V-shaped cantilevers can be obtained through several methods. One of them is the PBA method. In another approach, the cantilever is divided into two sections: a triangular head
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Li, Mi, Lianqing Liu, Ning Xi, and Yuechao Wang. "Biological Applications of a Nanomanipulator Based on AFM: In situ visualization and quantification of cellular behaviors at the single-molecule level." IEEE Nanotechnology Magazine 9, no. 3 (2015): 25–35. http://dx.doi.org/10.1109/mnano.2015.2441110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Krohs, Florian, Cagdas Onal, Metin Sitti, and Sergej Fatikow. "Towards Automated Nanoassembly With the Atomic Force Microscope: A Versatile Drift Compensation Procedure." Journal of Dynamic Systems, Measurement, and Control 131, no. 6 (2009). http://dx.doi.org/10.1115/1.4000139.

Повний текст джерела
Анотація:
While the atomic force microscope (AFM) was mainly developed to image the topography of a sample, it has been discovered as a powerful tool also for nanomanipulation applications within the last decade. A variety of different manipulation types exists, ranging from dip-pen and mechanical lithography to assembly of nano-objects such as carbon nanotubes (CNTs), deoxyribonucleic acid (DNA) strains, or nanospheres. The latter, the assembly of nano-objects, is a very promising technique for prototyping nanoelectronical devices that are composed of DNA-based nanowires, CNTs, etc. But, pushing nano-o
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhao, Wei, Kangmin Xu, Xiaoping Qian, and Rong Wang. "Tip Based Nanomanipulation Through Successive Directional Push." Journal of Manufacturing Science and Engineering 132, no. 3 (2010). http://dx.doi.org/10.1115/1.4001676.

Повний текст джерела
Анотація:
Nanomanipulation refers to the process of transporting nanoscale components. It has found applications in nanodevice prototyping and biomolecular and cellular investigation. In this paper, we present an atomic force microscope (AFM) based approach for automated manipulation of nanoparticles to form designed patterns. The automated manipulation is based on a novel method, successive directional push. This method keeps pushing along a fixed forward direction until the particle reaches the baseline of the target position, and it then repeats the pushing process along the baseline direction. This
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Landolsi, Fakhreddine, Fathi H. Ghorbel, and James B. Dabney. "Adhesion and Friction Coupling in Atomic Force Microscope-Based Nanopushing." Journal of Dynamic Systems, Measurement, and Control 135, no. 1 (2012). http://dx.doi.org/10.1115/1.4006370.

Повний текст джерела
Анотація:
The use of the atomic force microscope (AFM) as a tool to manipulate matter at the nanoscale has received a large amount of research interest in the last decade. Experimental and theoretical investigations have showed that the AFM cantilever can be used to push, cut, or pull nanosamples. However, AFM-based nanomanipulation suffers a lack of repeatability and controllability because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In this paper, we will investigate the effects of the tip-sample interactions on nanopushing manipulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Korayem, M. H., R. N. Hefzabad, A. Homayooni, and H. Aslani. "Molecular dynamics simulation of nanomanipulation based on AFM in liquid ambient." Applied Physics A 122, no. 11 (2016). http://dx.doi.org/10.1007/s00339-016-0504-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Park, Kyung Jin, Ji-Hyeok Huh, Dae-Woong Jung, et al. "Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres." Scientific Reports 7, no. 1 (2017). http://dx.doi.org/10.1038/s41598-017-06456-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hantschel, Thomas, Peter Ryan, Saku Palanne, et al. "Nanoprober-Based Pick-and-Place Process for Site-Specific Characterization of Individual Carbon Nanotubes." MRS Proceedings 1081 (2008). http://dx.doi.org/10.1557/proc-1081-p17-04.

Повний текст джерела
Анотація:
AbstractThe potential use of carbon nanotubes (CNT) as interconnects requires also new characterization approaches as the existing ones are optimized for three-dimensional materials and do not work for inherently one-dimensional structures like CNTs. Therefore, we have developed a so-called pick-and-place process which allows to remove an individual CNT from a specific site and to place it at another location for further analysis. The approach is based on nanomanipulation combined with scanning electron microscopy (SEM). This paper presents the pick-and-place concept and explains the different
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!