Добірка наукової літератури з теми "Anisotropie materiálu"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Anisotropie materiálu".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Anisotropie materiálu":

1

KRAUS, L. "LOCAL MAGNETIC ANISOTROPY AND MAGNETOANELASTIC EFFECT IN AMORPHOUS AND NANOCRYSTALLINE ALLOYS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 916–21. http://dx.doi.org/10.1142/s0217979293001979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anelastic deformation of amorphous and nanocrystalline metals results in an anisotropic distribution of atomic pair bonds. This mechanism can lead to rather strong macroscopic magnetic anisotropy in some alloys. Experimental results show that the creep-induced magnetic anisotropy of amorphous and nanocrystalline Fe- and Co-based alloys essentially depends both on TM and metalloid elements. This is a clear evidence that the random local magnetic anisotropy in these materials is closely related to the details of electronic structure. Based on this conclusion a model of bond -orientational anisotropy taking into account the distribution of local anisotropies in TM-based alloys is proposed.
2

Yu, Jing, Yongmei Zhang, Yuhong Zhao, and Yue Ma. "Anisotropies in Elasticity, Sound Velocity, and Minimum Thermal Conductivity of Low Borides VxBy Compounds." Metals 11, no. 4 (April 1, 2021): 577. http://dx.doi.org/10.3390/met11040577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anisotropies in the elasticity, sound velocity, and minimum thermal conductivity of low borides VB, V5B6, V3B4, and V2B3 are discussed using the first-principles calculations. The various elastic anisotropic indexes (AU, Acomp, and Ashear), three-dimensional (3D) surface contours, and their planar projections among different crystallographic planes of bulk modulus, shear modulus, and Young’s modulus are used to characterize elastic anisotropy. The bulk, shear, and Young’s moduli all show relatively strong degrees of anisotropy. With increased B content, the degree of anisotropy of the bulk modulus increases while those of the shear modulus and Young’s modulus decrease. The anisotropies of the sound velocity in the different planes show obvious differences. Meanwhile, the minimum thermal conductivity shows little dependence on crystallographic direction.
3

Sharma, M. D. "Rayleigh wave at the surface of a general anisotropic poroelastic medium: derivation of real secular equation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2211 (March 2018): 20170589. http://dx.doi.org/10.1098/rspa.2017.0589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A secular equation governs the propagation of Rayleigh wave at the surface of an anisotropic poroelastic medium. In the case of anisotropy with symmetry, this equation is obtained as a real irrational equation. But, in the absence of anisotropic symmetries, this secular equation is obtained as a complex irrational equation. True surface waves in non-dissipative materials decay only with depth. That means, propagation of Rayleigh wave in anisotropic poroelastic solid should be represented by a real phase velocity. In this study, the determinantal system leading to the complex secular equation is manipulated to obtain a transformed equation. Even for arbitrary (triclinic) anisotropy, this transformed equation remains real for the propagation of true surface waves. Such a real secular equation is obtained with the option of boundary pores being opened or sealed. A numerical example is solved to study the existence and propagation of Rayleigh waves in porous media for the top three (i.e. triclinic, monoclinic and orthorhombic) anisotropies.
4

Garemstani, Hamid, Dong Sheng Li, and Moe A. Khaleel. "Microstructure Sensitive Design and Quantitative Prediction of Effective Conductivity in Fuel Cell Design." Materials Science Forum 561-565 (October 2007): 315–18. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Statistical continuum approach is used to predict effective conductivity of anisotropic random porous heterogeneous media using two-point correlation functions. Probability functions play a critical role in describing the statistical distribution of different constituents in a heterogeneous media. In this study a 3-dimensional two-point correlation function is utilized to characterize the anisotropic porous media of a Cathode materials to incorporate all the details of the microstructure. These correlation functions are then linked to the effective properties using homogenization relations. An anisotropioc Green’s function solution is used to solve the set of field equations. Examples in this study demonstrated how the model captured the anisotropy in effective conductivity of the random heterogeneous media. Predicted results showed the influence of microstructure on the effective conductivity tensor.
5

Tramsen, Halvor T., Stanislav N. Gorb, Hao Zhang, Poramate Manoonpong, Zhendong Dai, and Lars Heepe. "Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface." Journal of The Royal Society Interface 15, no. 138 (January 2018): 20170629. http://dx.doi.org/10.1098/rsif.2017.0629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Friction anisotropy is an important property of many surfaces that usually facilitate the generation of motion in a preferred direction. Such surfaces are very common in biological systems and have been the templates for various bio-inspired materials with similar tribological properties. So far friction anisotropy is considered to be the result of an asymmetric arrangement of surface nano- and microstructures. However, here we show by using bio-inspired sawtooth-structured surfaces that the anisotropic friction properties are not only controlled by an asymmetric surface topography, but also by the ratio of the sample–substrate stiffness, the aspect ratio of surface structures, and by the substrate roughness. Systematically modifying these parameters, we were able to demonstrate a broad range of friction anisotropies, and for specific sample–substrate combinations even an inversion of the anisotropy. This result highlights the complex interrelation between the different material and topographical parameters on friction properties and sheds new light on the conventional design paradigm of tribological systems. Finally, this result is also of great importance for understanding functional principles of biological materials and surfaces, as such inversion of friction anisotropy may correlate with gait pattern and walking behaviour in climbing animals, which in turn may be used in robotic applications.
6

Zhang, Qiankun, Rongjie Zhang, Jiancui Chen, Wanfu Shen, Chunhua An, Xiaodong Hu, Mingli Dong, Jing Liu, and Lianqing Zhu. "Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials." Beilstein Journal of Nanotechnology 10 (August 20, 2019): 1745–53. http://dx.doi.org/10.3762/bjnano.10.170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently, quantitative research on 1T’-WTe2 has been reported, revealing its fascinating physical properties such as non-saturating magnetoresistance, highly anisotropic crystalline structure and anisotropic optical/electrical response. Especially for its anisotropic properties, surging research interest devoted solely to understanding its structural and optical properties has been undertaken. Here we report quantitative, comprehensive work on the highly anisotropic, optical, electrical and optoelectronic properties of few-layer 1T’-WTe2 by azimuth-dependent reflectance difference microscopy, DC conductance measurements, as well as polarization-resolved and wavelength-dependent optoelectrical measurements. The electrical conductance anisotropic ratio is found to ≈103 for a thin 1T’-WTe2 film, while the optoelectronic anisotropic ratio is around 300 for this material. The polarization dependence of the photo-response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T’-WTe2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for applications of 2D materials for light polarization detection.
7

Chanda, Arnab, and Christian Callaway. "Tissue Anisotropy Modeling Using Soft Composite Materials." Applied Bionics and Biomechanics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/4838157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin’s, Humphrey’s, and Veronda-Westmann’s model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.
8

Gurvich, Mark R. "On Characterization of Anisotropic Elastomeric Materials for Structural Analysis." Rubber Chemistry and Technology 77, no. 1 (March 1, 2004): 115–30. http://dx.doi.org/10.5254/1.3547805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Existing efforts in constitutive modeling of elastomers are primarily focused on isotropic materials. On the other hand, anisotropic elastic models were successfully developed for traditional composites with relatively small strains, where geometrical non-linearity of deformation may be ignored. There are, however, certain materials where neither large deformation and incompressibility nor anisotropy of material stiffness may be neglected. This study proposes a general constitutive approach to model both hyperelasticity (including incompressibility) and full anisotropy of material deformation in structural analysis. According to the proposed approach, an original hyperelastic anisotropic body is modeled as a combination of two hypothetical components (hyperelastic isotropic and elastic anisotropic ones). The proposed approach shows simplicity and convenience of practical application along with high accuracy of analysis. It may be easily implemented in computational analysis of 2- and 3-D problems using commercially available FEA codes without additional programming efforts. Analytical and computational implementation of the approach is considered on representative examples of elastomeric structures and rubber-based composites. Analytical solutions are shown for examples of biaxial tension of composites and inflation of a toroidal anisotropic tube. FEA solutions are discussed on examples of an inflated anisotropic sphere and non-uniform deformation of a composite layer. Obtained results are discussed to emphasize benefits of the proposed approach. Finally, a methodology to evaluate material parameters using corresponding test results is considered according to the proposed approach.
9

Huang, Kai-xuan, Xiao-guang Gao, Bing-jie Hao, Xiu-xian Zhou, Zhan Li, Bao-wang Su, Xiao-kuan Li, et al. "Anisotropic imaging for the highly efficient crystal orientation determination of two-dimensional materials." Journal of Materials Chemistry C 7, no. 20 (2019): 5945–53. http://dx.doi.org/10.1039/c9tc00900k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Хлыбов, А. А., та А. Л. Углов. "Об использовании параметров структурного шума при контроле поверхностными акустическими волнами Рэлея стали 20ГЛ в процессе упругопластического деформирования". Дефектоскопия 7 (липень 2021): 3–10. http://dx.doi.org/10.31857/s0130308221070010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The relevance of the work is due to the need to create methods for determining the stress-strain state of acoustically anisotropic structural materials in the composition of technical objects operated in Arctic conditions. The features of using the acoustoelasticity phenomenon for materials with different values of acoustoelastic coefficients, acoustic anisotropy, and temperature dependence coefficients of acoustic parameters appearing in the calculation algorithms are analyzed. It is established that the existing approaches to accounting for temperature effects in a number of important cases lead to noticeable errors in determining mechanical stresses in the material of critical technical objects. At the same time, taking into account the temperature corrections is necessary for both biaxial (flat) and uniaxial stress states. The presence of anisotropy of the thermoacoustic coefficients of transverse waves for materials with anisotropy is experimentally shown. Refined calculation formulas for determining the one - and two-axis stress state of an anisotropic material, taking into account the anisotropy of the thermoacoustic coefficients of transverse waves, are proposed.

Дисертації з теми "Anisotropie materiálu":

1

Valtrová, Martina. "Píst zážehového motoru vyráběný aditivní technologií." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-449789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The first objective of this thesis was compiling research about currently produced pistons for internal combustion engines and about additive manufacturing and based on the acquired information deciding which type of piston makes the most of the advantages. Following this research, the next step was creating a design adjustment of a piston, which was previously designed with the conventional methods of manufacturing in mind, in a way that would make the best use of the different possibilities of additive manufacturing. There was also an optimisation carried out, which depicted the densities of material elements in the piston, showing where the material was less important. There were three variants of the additive manufactured piston created, ranging from a relatively conservative design, which could be theoretically produced by conventional methods with a more substantial subtraction of material added, to a design which could only be produced via additive manufacturing. A thermo-structural analysis at maximum engine load was carried out for all these piston models. Based on these data, a conclusion was made, whether the use of additive manufacturing was justified over the use of the conventional subtractive methods.
2

Belijar, Guillaume. "Anisotropic composite elaboration and modeling : toward materials adapted to systems." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30353/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de ces travaux de thèse a été de démontrer la possibilité, en se basant sur une approche prédictive, de contrôler avec précision la fonctionnalisation d'un matériau composite, d'isotrope à anisotrope, sous l'application d'un champ électrique. Ces derniers matériaux présentent en effet un fort potentiel pour des applications futures telles que des condensateurs intégrés ou bien encore des composites conducteurs thermiques. Une première approche théorique des différentes forces et mécanismes entrant en jeux lors de l'élaboration de composites anisotropes par chaînage a permis d'identifier les paramètres impactant le procédé d'élaboration. A la suite de cette étude théorique, un modèle de formation de chaînes de particules sous champ électrique a été développé afin de prédire la dynamique de chaînage. Le modèle choisi (méthode moment dipolaire effectif) a permis la simulation de plus de 4500 particules. Les paramètres ayant au préalable été identifiés ont ensuite été mesurés. Pour la permittivité des particules, une méthode de mesure diélectrophorétique a été développée, ce qui est une première dans le cas de particules céramiques. L'élaboration des composites anisotropes a été couplé avec un suivi novateur, en temps réel, d'un marqueur (permittivité) de la formation de chaînes, permettant d'obtenir la dynamique de structuration des particules. Afin de valider l'aspect prédictif du modèle numérique, une comparaison a été effectuée entre la dynamique mesurée et simulée. Les résultats obtenus ont démontré une très bonne fiabilité des prédictions du modèle, même si des progrès sont encore réalisables aux faibles taux de chargement. Dans un dernier temps, une preuve de concept a été démontrée, de la réalisation de composites anisotropes dont les particules sont alignées perpendiculairement au champ électrique
This study was aimed to demonstrate the possibility, based on a predictive approach, to tailor the structure of a composite from isotropic to anisotropic when applying an electric field. This composites have great potential for future applications such as embed capacitors or thermally conductive composites. A theoretical approach of the forces and mechanisms acting in the elaboration of anisotropic composites by chaining allowed identifying the key parameters. Based on this approach a model of particle chaining under electric field was established to predict the structuration dynamics. This model (effective dipole moment) allowed simulating more than 4500 particles. The parameters previously identified were then measured, and for the particle permittivity, a dielectrophoretic measurement method was developed, which was a first for ceramic particles. The elaboration of anisotropic composites was coupled to a novel on-line monitoring of a chaining marker (permittivity), allowing to obtain the structuration dynamics. To validate the predictive aspect of the model, experimental and numerical dynamics were compared showing the robustness and accuracy of the model, even if improvement is still possible at low filler content. In the last part, a proof of concept was demonstrated of the elaboration of anisotropic composites with fillers oriented normally to the direction of the electric field
3

Rebouah, Marie. "Anisotropic stress softening and viscoelasticity in rubber like materials and architectured materials." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse présente une étude du comportement mécanique des matériaux mous soumis à de grandes déformations. Dans ce cadre deux types de matériaux ont été considérés : des matériaux de type élastomères et des matériaux architecturés mimant des matériaux du vivant. Dans un premier temps, cette étude se focalise sur des matériaux de type élastomères pour une meilleure compréhension des phénomènes, notamment grâce à une large étude expérimentale qui n'aurait pas pu être menée sur des tissus du vivant. La caractérisation mécanique des élastomères permet de mettre en évidence différents phénomènes tel que : l'adoucissement de contrainte (aussi connu sous le nom d'effet Mullins), l'anisotropie induite, la déformation résiduelle et la viscoélasticité. Dans le but de créer un modèle capable de prendre en compte tous ces effets dans le cadre des grandes déformations, différents élastomères ont été utilisés pour mettre en évidence chacun de ces phénomènes. Ainsi, chaque matériau a permis d'isoler un phénomène afin de développer et de valider une nouvelle partie du modèle. Par la suite, des matériaux architecturés de type élastomères ont été fabriqués et utilisés pour induire une anisotropie initiale. Le modèle proposé précédemment est alors étendu à la prise en compte de cette anisotropie initiale. Une extension à la modélisation des tissus du vivant (qui sont pour la plupart initialement anisotropes) devient ainsi possible. Chaque modèle a été implanté numériquement dans un code de calcul par éléments finis (excepté pour la viscoélasticité), et la robustesse du modèle a été validée grâce à des essais expérimentaux complexes (bulge test) ou sur des structures complexes (plaque trouée)
This thesis work presents a study of the mechanical behavior of soft materials submitted to large deformations. In this context two types of materials were considered: rubber like materials and architectured materials to mimic soft tissues. As a first step, this study focuses on rubber like materials for a better understanding of the phenomena, especially through an large experimental study that could not be lead on soft tissues.The mechanical characterization of the rubber like materials allows highlighting several phenomena such as: the stress softening (also known as Mullins effect), induced anisotropy, permanent set and viscoelasticity. With the aim to create a model able to take into account all these effect in the framework of large deformations, several rubber like materials were used to highlight each one of these phenomena. In this way, each material permits to isolate one phenomenon to develop and validate a new part of the model.Thereafter, architectured materials made of rubber like materials were used to induce an initial anisotropy. The model proposed previously is adapted to take into account this initial anisotropy. An extension to modeling soft tissues (most of them are initially anisotropic) becomes possible.Each model was numerically implemented in a finite element code (except for the viscoelasticity), and the robustness of the model was validated by means of complex experimental tests (bulge test) or on complex structures (holey plate)
4

Geslain, Alan. "Anisotropie naturelle et induite des matériaux poreux : étude expérimentale et modélisation." Phd thesis, Université du Maine, 2011. http://tel.archives-ouvertes.fr/tel-00718301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse a pour objectif de caractériser le comportement anisotrope des mousses acoustiques. Ces matériaux, couramment employés pour lutter contre les nuisances sonores et vibratoireset sont modélisés à l'aide du modèle de Biot. Celui-ci est basé sur le formalisme de lamécanique des milieux continus à deux champs couplés, l'un associé au solide et l'autre au fluidesaturant. Nous nous intéresserons plus particulièrement dans ce travail aux paramètres du solideet aux matériaux présentant une anisotropie (c'est-à-dire des propriétés qui varient suivant lesdirections) du squelette solide. Ici, deux types d'anisotropie sont distingués, l'anisotropie naturelledu matériau et celle induite par une action extérieure, cette dernière ayant pour principale cause lacompression statique des échantillons. Par ailleurs, trois types de symétries naturelles sont considérés : isotropie, isotropie transverse avec et sans rotation de direction principale. Celles-ci sont leplus couramment rencontrées.L'analyse expérimentale du type de symétrie des mousses se fait au moyen d'un dispositif, appelé rigidimètre, qui permet de déterminer la raideur mécanique d'échantillons cubiques de moussesous hypothèse quasi-statique. Celui-ci est couplé à une mesure au vibromètre laser à balayage, permettantde mesurer le déplacement normal des faces des cubes. Des lignes de niveaux des champsde déplacements normaux surfaciques sont ainsi obtenues. Il est alors possible de classer les différentstypes d'anisotropie en analysant ces courbes de niveaux. Ainsi, avec ces a-priori, une méthodea été élaborée pour déterminer les coefficients de Poisson à l'aide de techniques de minimisationà partir des autres constantes élastiques préalablement déterminées. Ce problème est construit àpartir d'indicateurs expérimentaux et d'indicateurs provenant d'un modèle éléments finis.L'influence de la compression statique sur les modules élastiques est ensuite étudiée. Toutd'abord, la variation du module d'Young en fonction du taux de compression est caractérisée àpartir de mesures au rigidimètre. Ensuite, la variation du module de cisaillement en fonction de lacompression statique est caractérisée par une méthode d'ondes guidées (en collaboration avec laKULeuven). Il a été montré que les variations de modules élastiques pouvaient être importantespuisqu'elles peuvent atteindre 50 %. A partir de ces déterminations expérimentales, quatre zones decomportement de la mousse ont été mises en évidence. Ces quatre zones correspondent respectivementà des effets de compression, de flambement, de densification et de réarrangement des cellules.Un modèle éléments-finis microstructural, dans lequel la cellule élémentaire est modélisée par untétrakaidécaèdre de Kelvin, est enfin proposé. Celui-ci permet de modéliser les trois premièreszones, qui correspondent aux compressions statiques usuelles dans les applications acoustiques.
5

Yamashita, Tatsuya. "Analysis of anisotropic material." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1177700236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Taouk, Habib. "Wave propagation in general anisotropic media." Ohio : Ohio University, 1986. http://www.ohiolink.edu/etd/view.cgi?ohiou1183380228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Morris, Billy Ray. "Grain size estimation in anisotropic materials." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/20042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lakku, Pavan Misra Anil. "Anisotropic granular models for cohesive materials." Diss., UMK access, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2005.
"A thesis in civil engineering." Typescript. Advisor: Anil Misra. Vita. Title from "catalog record" of the print edition Description based on contents viewed March 12, 2007. Includes bibliographical references (leaves 75-77). Online version of the print edition.
9

Bradford, Ian David Richard. "Finite deformations of highly anisotropic materials." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

O'Neill, J. M. "Thermoelastic stress analysis of anisotropic materials." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Anisotropie materiálu":

1

Groupe français de rhéologie. Colloque national. Rhéologie des matériaux anisotropes =: Rheology of anisotropic materials. Toulouse: Cepadues-Éditions, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glaser, Rainer, and Piotr Kaszynski, eds. Anisotropic Organic Materials. Washington, DC: American Chemical Society, 2001. http://dx.doi.org/10.1021/bk-2001-0798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Skrzypek, Jacek J., and Artur W. Ganczarski, eds. Mechanics of Anisotropic Materials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17160-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ting, T. C. t. Anisotropic elasticity. New York: Oxford University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cowin, Stephen C. Continuum Mechanics of Anisotropic Materials. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Skrzypek, Jacek J., and Artur W. Ganczarski, eds. Anisotropic Behaviour of Damaged Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36418-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cowin, Stephen C. Continuum Mechanics of Anisotropic Materials. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5025-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hwu, Chyanbin. Anisotropic elastic plates. New York: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Golfman, Yosif. Hybrid anisotropic materials for wind power turbine blades. Boca Raton, Fla: CRC Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Golfman, Yosif. Hybrid anisotropic materials for structural aviation parts. Boca Raton: CRC Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Anisotropie materiálu":

1

Ieşan, Dorin. "Anisotropic materials." In Saint-Venant's Problem, 44–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bert, Charles W. "Anisotropie-Material Behavior." In Manual on Experimental Methods for Mechanical Testing of Composites, 5–10. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1129-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Altenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Linear Anisotropic Materials." In Mechanics of Composite Structural Elements, 15–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08589-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Altenbach, Holm, Johannes Altenbach, and Wolfgang Kissing. "Linear Anisotropic Materials." In Mechanics of Composite Structural Elements, 19–84. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8935-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ganczarski, Artur. "Anisotropic Material Behavior." In Advanced Structured Materials, 125–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30355-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hwu, Chyanbin. "Piezoelectric Materials." In Anisotropic Elastic Plates, 369–410. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5915-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Volokh, Konstantin. "Anisotropic Elasticity." In Mechanics of Soft Materials, 77–90. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1599-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Volokh, Konstantin. "Anisotropic Elasticity." In Mechanics of Soft Materials, 79–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8371-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hwu, Chyanbin. "Viscoelastic Materials." In Anisotropic Elasticity with Matlab, 289–302. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66676-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bendsøe, Martin P., and Ole Sigmund. "Design with anisotropic materials." In Topology Optimization, 159–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05086-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Anisotropie materiálu":

1

Hilgert, Oliver, Susanne Höhler, and Holger Brauer. "Anisotropic HFI Welded Steel Pipes for Strain Based Design." In 2016 11th International Pipeline Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ipc2016-64194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Generally isotropic behavior is assumed and demanded in line pipe specifications. Especially in strain based design, compressive and tensile strain capacity models rely on iso-tropic assumptions. On the other hand every pipe has got an anisotropic material characteristic which effects the performance in strain based design. In this contribution HFI-welded steel tubes are investigated due to their underlying material anisotropy. Depending on their basic strip weld material and production process the anisotropy differs from UOE or spiral welded pipes. Especially, in radial direction of steel pipe mechanical properties are challenging to gain. Thus two methods are suggested to characterize the anisotropic parameters in all three pipe directions. A small scale approach evaluating Lankford values and a full scale method evaluating Hill factors are applied. While Lankford method relies on strains, Hills method relies on stresses. Both methods are explained and validated by internal pressure and full scale bending tests. Using the anisotropy parameters, their effect on strain based design is analyzed — both experimentally and numerically. In the end it is shown that distinct anisotropies can provide a benefit for HFI-welded steel tubes concerning strain capacity in strain based design applications.
2

Gaith, Mohamed S., and I. Alhayek. "The Measurement of Overall Elastic Stiffness and Bulk Modulus in Anisotropic Materials: Semiconductors." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the correlation between macroscopic and microscopic properties of the II-IV semiconductor compounds ZnX (X = S, Se, Te) is investigated. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for cubic system materials is decomposed into two parts; isotropic (two terms) and anisotropic parts. A scale for measuring the overall elastic stiffness of these compounds is introduced and its correlation with the calculated bulk modulus and lattice constants is analyzed. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus and inversely proportional to lattice constants. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the degree of anisotropy in an anisotropic material is proposed using the Norm Ratio Criteria (NRC). It is found that ZnS is the nearest to isotropy (or least anisotropic) while ZnTe is the least isotropic (or nearest to anisotropic) among these compounds. The norm and norm ratios are found to be very useful for selecting suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices.
3

Smith, Hollis, and Julian Norato. "A Topology Optimization Method for the Design of Orthotropic Plate Structures." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This work introduces a topology optimization method for the design of structures composed of rectangular plates each of which is made of a predetermined anisotropic material. This work builds upon the geometry projection method with two notable additions. First, a novel geometric parameterization of plates represented by offset surfaces is formulated that is simpler than the one used in previous works. Second, the formulation presented herein adds support to the geometry projection method for geometric components with general anisotropic material properties. A design-generation framework is formulated that produces optimal designs composed exclusively of rectangular plates that may be made of a predetermined, generally anisotropic material. The efficacy of the proposed method is demonstrated with a numerical example comparing optimal cantilever beam designs obtained using isotropic- and orthotropic-material plates. For this example, we maximize the stiffness of the structure for a fixed amount of material. The example reveals the importance of considering material anisotropy in the design of plate structures. Moreover, it is demonstrated that an optimally stiff design for plates made of an isotropic material can exhibit detrimental performance if the plates are naively replaced with an anisotropic material. Although the example given in this work is in the context of orthotropic plates, since the formulation presented in this work supports arbitrary anisotropic materials, it may be readily extended to support the design of each component’s material anisotropy as a part of the optimization routine.
4

Watanabe, Osamu. "Statistical Evaluation of Local Stress by Three-Dimensional Polycrystalline Material at Elevated Temperature." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present paper presents the Voronoi tessellation algorithm in the three dimensional geometry together with the mesh subdivision algorithm using first order tetrahedron element (4 nodes) and second order tetrahedron element (10 nodes). The elasticity tensors are assumed to include isotropic material and anisotropic material of FCC or BCC crystal. The employed finite element formulation is based on the updated Lagrange type, and the selective numerical integration scheme is used in the present analysis. The obtained numerical examples includes the effects of employed finite elements on local stress, and also the statistical variation around mean value is investigated for the isotropic material and the anisotropic materials having different anisotropy ratio A in elastic range. The inelastic analysis at elevated temperature is also carried out for the anisotropic materials in order to investigate ability of modeling.
5

Gaith, Mohamed S., and Imad Alhayek. "On the Measurement of the Overall Elastic Stiffness and Bulk Modulus in Anisotropic Materials: Semiconductors." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the correlation between macroscopic and microscopic properties of the II-IV semiconductor compounds CdX (X = S, Se, Te) is investigated. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for cubic system materials is decomposed into two parts; isotropic (two terms) and anisotropic parts. A new scale for measuring the overall elastic stiffness of these compounds is introduced and its correlation with the calculated bulk modulus and lattice constants is analyzed. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus and inversely proportional to lattice constants. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the anisotropy degree in an anisotropic material is proposed using the Norm Ratio Criteria (NRC). It is found that CdS is the nearest to isotropy (or least anisotropic) while CdTe is the least near to isotropy (or nearest to anisotropic) among these compounds. The norm and norm ratios are found to be very useful for selecting suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices.
6

Gaith, Mohamed, and Imad Alhayek. "The Calculation of Stiffness for Semiconductor Components." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the correlation between macroscopic and microscopic properties of the II-IV semiconductor compounds CdX (X = S, Se, Te) is investigated. Based on constructing orthonormal tensor basis elements using the form-invariant expressions, the elastic stiffness for cubic system materials is decomposed into two parts; isotropic (two terms) and anisotropic parts. A new scale for measuring the overall elastic stiffness of these compounds is introduced and its correlation with the calculated bulk modulus and lattice constants is analyzed. The overall elastic stiffness is calculated and found to be directly proportional to bulk modulus and inversely proportional to lattice constants. A scale quantitative comparison of the contribution of the anisotropy to the elastic stiffness and to measure the anisotropy degree in an anisotropic material is proposed using the Norm Ratio Criteria (NRC). It is found that CdS is the nearest to isotropy (or least anisotropic) while CdTe is the least near to isotropy (or nearest to anisotropic) among these compounds. The norm and norm ratios are found to be very useful for selecting suitable materials for electro-optic devices, transducers, modulators, acousto-optic devices.
7

Cameron, Jay. "Anisotropic Materials Use in the ASME Boiler and Pressure Vessel Code." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Very few materials have all their properties behave the same in all orientations of the material. The term for this behavior is anisotropy or anisotropic properties. The properties that are affected and the degree of anisotropy they exhibit, depend on the material family, the alloy, and the processing of the material. This paper will only discuss metals, and limited to those metal specifications adopted in the ASME Boiler & Pressure Vessel Code (B&PVC) Section II, Parts A and B. The anisotropic properties of plate have been well recognized explicitly and implicitly in the B&PVC for a very long time. At issue, and the specific focus of this paper, is another wrought product form: bars. Bar, specifically round bar — also called rod, is a very useful starting material to manufacture pressure parts. The bar can be stocked at the largest feasible diameter and length, and then cost-effectively machined to whatever diameter and length is desired for the part. Due to the anisotropic properties of bar, there is a need for understanding and setting limitations for the use of such material in the B&PVC. This paper will explore the past history, current status and future directions of the Code requirements for bar.
8

Feng, Yuan, Ruth J. Okamoto, Ravi Namani, Guy M. Genin, and Philip V. Bayly. "Identification of a Transversely Isotropic Material Model for White Matter in the Brain." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Axonal fiber tracts in white matter of the brain form anisotropic structures. It is assumed that this structural anisotropy causes mechanical anisotropy, making white matter tissue stiffer along the axonal fiber direction. This, in turn, will affect the mechanical loading of axonal tracts during traumatic brain injury (TBI). The goal of this study is to use a combination of in-vitro tests to characterize the mechanical anisotropy of white matter and compare it to gray matter, which is thought to be structurally and mechanically isotropic. A more complete understanding of the mechanical anisotropy of brain tissue will provide more accurate information for computational simulations of brain injury.
9

Koscso, Adam, Guido Dhondt, and E. P. Petrov. "High-Fidelity Sensitivity Analysis of Modal Properties of Mistuned Bladed Disks Regarding Material Anisotropy." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.
10

Pan, E. "Force Dipoles in Anisotropic Materials: Cell Orientation Guided by Substrate Anisotropy?" In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent studies on cell orientation have shown that cells can actively sense the elastic properties of their environment and strengthen contacts and cytoskeleton in a direction of large effective stiffness. For example, it was found that cells oriented perpendicular to clamped boundaries whilst parallel to free boundaries. It was also suggested that active mechanosensing in an elastically anisotropic medium might lead to cell orientation. In this paper, we first develop an analytical force-dipole solution in anisotropic materials. We then apply this solution to investigate the effect of substrate anisotropy on cell orientation. In our numerical examples, the substrate will be assumed to be cubic, but oriented in different orientations. The interactive energy of the cells is calculated for different boundary conditions (free and clamped) on the surface of the anisotropic substrate.

Звіти організацій з теми "Anisotropie materiálu":

1

Evans, Jordan Andrew. Nuclear Reactor Materials and Anisotropy. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1578013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Adamson, Douglas H., and Andrew J. Oyer. Development of an Anisotropic Thermal Transport Material. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada594404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Johnson, G. C. Nondestructive evaluation of residual stress in anisotropic materials. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6452606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mehrabadi, M. M., S. C. Cowin, and C. O. Horgan. Strain Energy Density Bounds for Linear Anisotropic Elastic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ting, T. C. The Stroh Formalism for Anisotropic Elasticity with Applications to Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada290710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ting, T. C. The Stroh Formalism for Anisotropic Elasticity with Applications to Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Skalicky, Peter, Josef Fidler, Roland Groessinger, and Hans Kirchmayr. Anisotropy and Microstructure of Rare Earth Permanent Magnet Materials. Fort Belvoir, VA: Defense Technical Information Center, January 1986. http://dx.doi.org/10.21236/ada170788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kalidindi, Surya R., and Ulrike G. Wegst. Use of Spherical Nanoindentation to Characterize the Anisotropic Properties of Microscale Constituents and Interfaces in Hierarchically Structured Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2015. http://dx.doi.org/10.21236/ad1006778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії