Добірка наукової літератури з теми "Applied biomechanics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Applied biomechanics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Applied biomechanics"
&NA;. "Applied Spinal Biomechanics." Neurosurgery 62, no. 6 (June 2008): 1385. http://dx.doi.org/10.1227/01.neu.0000333343.93392.6d.
Повний текст джерелаWiechert, Bernd Udo. "Applied Biomechanics: Prosthetic and Orthopaedics." Proceeding International Conference on Science and Engineering 1 (October 31, 2017): xiii. http://dx.doi.org/10.14421/icse.v1.315.
Повний текст джерелаWaters, Amy, Elissa Phillips, Derek Panchuk, and Andrew Dawson. "The coach–scientist relationship in high-performance sport: Biomechanics and sprint coaches." International Journal of Sports Science & Coaching 14, no. 5 (June 25, 2019): 617–28. http://dx.doi.org/10.1177/1747954119859100.
Повний текст джерелаGrelsamer, Ronald P., and Craig H. Weinstein. "Applied Biomechanics of the Patella." Clinical Orthopaedics and Related Research 389 (August 2001): 9–14. http://dx.doi.org/10.1097/00003086-200108000-00003.
Повний текст джерелаEvans, Paul. "Biomechanics: basic and applied research." Clinical Materials 3, no. 1 (January 1988): 81. http://dx.doi.org/10.1016/0267-6605(88)90037-6.
Повний текст джерелаKoryakin, A. G., A. V. Vlasenko, E. A. Evdokimov, and E. P. Rodionov. "Applied aspects of respiratory biomechanics (current state of problem)." Medical alphabet, no. 9 (June 6, 2022): 56–68. http://dx.doi.org/10.33667/2078-5631-2022-9-56-68.
Повний текст джерелаIVANCEVIC, TIJANA T. "JET-RICCI GEOMETRY OF TIME-DEPENDENT HUMAN BIOMECHANICS." International Journal of Biomathematics 03, no. 01 (March 2010): 79–91. http://dx.doi.org/10.1142/s179352451000088x.
Повний текст джерелаOakes, Barry W. "Applied anatomy and biomechanics in sport." Medical Journal of Australia 166, no. 3 (February 1997): 147. http://dx.doi.org/10.5694/j.1326-5377.1997.tb140050.x.
Повний текст джерелаHudson, Jackie. "Applied Biomechanics in an Instructional Setting." Journal of Physical Education, Recreation & Dance 77, no. 8 (October 2006): 25–27. http://dx.doi.org/10.1080/07303084.2006.10597921.
Повний текст джерелаWendlová, Jaroslava. "Editorial: Applied biomechanics in musculoskeletal medicine." Wiener Medizinische Wochenschrift 161, no. 19-20 (October 2011): 457. http://dx.doi.org/10.1007/s10354-011-0035-2.
Повний текст джерелаДисертації з теми "Applied biomechanics"
Rafi, Murtaza. "Biomechanics of AAA surveillance patients." Thesis, KTH, Hållfasthetslära (Inst.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264765.
Повний текст джерелаBukaortaaneurysm (AAA) uppstår på grund av lokal förstoring av bukaortan och drabbar 1-2 % av den äldre svenska befolkningen. Vid antagning får bukaortaaneurysm-patienterna en datortomografscanning (CT-A) och senare påföljs av 2D ultraljudsscanningar. Det finns ett behov att veta om en adekvat geometri kan konstrueras från datortomografiscanningen och 2D ultraljudsbilderna. För att testa vår hypotes har endast datortomografibilder från sex patienter använts med hypotetiska ultraljudstvärsnitt (HUCS) tagna från CT-A uppföljningarna. AAA-ytan vid baslinjen expanderades i en strukturmekanisk modell genom inre övertryck tills den nådde de hypotetiska ultraljudstvärsnitten. Därefter jämfördes de morfade geometrierna med de CT-A-baserade geometrierna. Geometriavvikelsen mellan de beräknades genom avståndsmätningar. Även, rupturriskindikatorerna volymer och spänningar jämfördes. Slutligen, genom en känslighetsanalys undersöktes effekten av positioneringen av hypotetiska ultraljudstvärsnitten på volymerna och spänningarna. Resultaten visar att en adekvat geometri kan konstrueras genom den undersökta koncepten av morfning. De genomsnittliga avstånden mellan de morfade och CT-A-baserade geometrierna är 2-4 mm. Genomsnittliga volymskillnaderna för de sex patienterna är mellan 3.8-16.2 %. Väggspänningarna för de morfade och CT-A-baserade geometrierna är nära enbart för den första uppföljningen.
Ariane, Mostapha. "The discrete multi-physics method applied to biomechanics." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8048/.
Повний текст джерелаHolmberg, L. Joakim. "Musculoskeletal Biomechanics in Cross-country Skiing." Doctoral thesis, Linköpings universitet, Mekanik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-76148.
Повний текст джерелаVarför ska man kopiera de som är bäst inom sin idrottsgren? När man väl har lärt sig deras teknik så har de antagligen redan gått vidare. Vore det inte bättre att öka sin förståelse så att man kan ligga i framkant, istället för i svallvågorna? Med biomekaniska simuleringar som ett komplement till traditionella experimentella metoder finns möjligheten att få veta varför prestationen ökar, inte bara hur man ska göra för att öka sin prestation. Längdskidåkning innehåller snabba och kraftfulla helkroppsrörelser och därför behövs en beräkningsmetod som kan hantera helkroppsmodeller med många muskler. Avhandlingen presenterar flera muskeloskelettära simuleringsmodeller skapade i The AnyBody Modeling System™ och är baserade på inversdynamik och statisk optimering. Denna metod tillåter helkroppsmodeller med hundratals muskler och stelkroppssegment av de flesta kroppsdelarna. Avhandlingen visar att biomekaniska simuleringar kan användas som komplement till mer traditionella experimentella metoder vid biomekaniska studier av längdskidåkning. Exempelvis går det att förutsäga muskelaktiviteten för en viss rörelse och belastning på kroppen. Detta nyttjas för att studera verkningsgrad och prestation inom dubbelstakning. Utifrån experiment skapas olika simuleringsmodeller. Dessa modeller beskriver olika varianter (eller stilar) av dubbelstakning, alltifrån klassisk stil med relativt raka ben och kraftig fällning av överkroppen till en mer modern stil där åkaren går upp på tå och använder sig av en kraftig knäböj. Resultaten visar först och främst att ur verkningsgradsynpunkt är den klassiska stilen att föredra då den ger mest framåtdrivande arbete per utfört kroppsarbete, dvs den är energisnål. Men ska en längdlöpare komma så fort fram som möjligt (utan att bry sig om energiåtgång) verkar det som en mer modern stil är att föredra. Denna studie visar också att för att kunna jämföra kroppens energiåtgång för skelettmusklernas arbete mellan olika rörelser så krävs det en modell där muskler ingår. Andra studier som presenteras är hur muskelantagonister kan hittas, hur lastfördelningen mellan muskler eller muskelgrupper förändras när rörelsen förändras samt effekter av benproteser på energiåtgång. Några aspekter av metoden presenteras också. Två muskelmodeller och dess inverkan på olika simuleringsresultat visas. En annan aspekt är hur muskeldekomposition och muskelrekryteringskriterium påverkar beräkningarna. Normaliseringsfaktorer för olika muskelrekryteringskriterium presenteras.
Beräkningsbaserad biomekanik inom längdskidåkningen - möjligheter och begränsningar
Shadfan, Ramsey Harbi. "On the Energy Conserved in a Buckling Fung Hyperelastic Cylindrical Shell Subjected to Torsion, Internal Pressure and Axial Tension." Thesis, The University of Texas at San Antonio, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928944.
Повний текст джерелаA theoretical model is proposed for the buckling of a three-dimensional vein subjected to torsion, internal pressure, and axial tension using energy conservation methods. The vein is assumed to be an anisotropic hyperelastic cylindrical shell which obeys the Fung constitutive model. Finite deformation theory for thick-walled blood vessels is used to characterize the vessel dilation in the pre-buckling state.
The pre-buckling state is identified by its midpoint and then perturbed by a displacement vector field dependent on the circumferential and axial directions to define the buckled state. The total potential energy functional of the system is extremized by minimizing the first variation with respect to the elements of the set of all continuous bounded functions on R 3. The Euler-Lagrange equations form three coupled linear partial differential equations with Dirichlet boundary conditions characterizing the buckling displacement field under equilibrium.
A second solution method approximates the first variation of the total potential energy functional using a variational Taylor series expansion. The approximation is minimized and combined with equations of equilibrium derived from elasticity theory to yield a polynomial relating buckling eigenmodes, material parameters, geometric parameters, and the critical angle of twist which induces buckling. Various properties of the total potential energy functional specific to the problem are proved. Another solution method is outlined using the first variation approximation and the basis of the kernel of the linear transformation which maps buckling displacement amplitudes during static equilibrium.
Zhang, Zhiqing. "Biomechanical analysis and model development applied to table tennis forehand strokes." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/24902.
Повний текст джерелаCousins, William Bryan. "Boundary Conditions and Uncertainty Quantification for Hemodynamics." Thesis, North Carolina State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3575896.
Повний текст джерелаWe address outflow boundary conditions for blood flow modeling. In particular, we consider a variety of fundamental issues in the structured tree boundary condition. We provide a theoretical analysis of the numerical implementation of the structured tree, showing that it is sensible but must be performed with great care. We also perform analytical and numerical studies on the sensitivity of model output on the structured tree's defining geometrical parameters. The most important component of this dissertation is the derivation of the new, generalized structured tree boundary condition. Unlike the original structured tree condition, the generalized structured tree does not contain a temporal periodicity assumption and is thus applicable to a much broader class of blood flow simulations. We describe a numerical implementation of this new boundary condition and show that the original structured tree is in fact a rough approximation of the new, generalized condition.
We also investigate parameter selection for outflow boundary conditions, and attempt to determine a set of structured tree parameters that gives reasonable simulation results without requiring any calibration. We are successful in doing so for a simulation of the systemic arterial tree, but the same parameter set yields physiologically unreasonable results in simulations of the Circle of Willis. Finally, we investigate the extension of recently introduced PDF methods to smooth solutions of systems of hyperbolic balance laws subject to uncertain inputs. These methods, currently available only for scalar equations, would provide a powerful tool for quantifying uncertainty in predictions of blood flow and other phenomena governed by first order hyperbolic systems.
Sterner, Jay. "SMARTPHONE-TAPE METHOD FOR CALCULATING BODY SEGMENT INERTIAL PARAMETERS FOR ANALYSIS OF PITCHING ARM KINETICS." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2133.
Повний текст джерелаCarranza, López Carlos Alberto 1975. "Posição do osso hioide e sua relação com a atividade eletromiográfica dos músculos supra-hioideos e infra-hioideos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288822.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-21T20:25:06Z (GMT). No. of bitstreams: 1 CarranzaLopez_CarlosAlberto_M.pdf: 2138268 bytes, checksum: a9443199a187ae6526690dda5e8b63fe (MD5) Previous issue date: 2012
Resumo: O osso hioide é um osso em forma de U que não se articula com nenhum outro osso, se localiza na parte anterior do pescoço e participa em funções importantes como deglutição, fala, mastigação e respiração. Para se manter estável, o osso hioide está suspenso por ligamentos, fascias e músculos. Diversos estudos em pessoas sem problemas dentários, esqueléticos nem funcionais demonstraram que o osso hioide localiza-se numa posição mais inferir nos homens que nas mulheres, mas nem sempre em todos os homens está nesta posição. O objetivo deste trabalho foi determinar se a posição do osso hioide tem relação com a atividade eletromiografica dos músculos supra-hioideos e infra-hioideos. Foram selecionados voluntariamente 16 homens classe I esquelética, sem problemas de disfunção temporomandibular, sem problemas visuais ou de respiração oral. Para avaliar a posição do osso hiode foram tomadas radiografias laterais em posição natural da cabeça de todos os voluntários e foi avaliado o triângulo hioideo. Para determinar a posição vertical do osso hióde, considerou-se a altura do triângulo hióide, valores menores a 3,4 mm foi considerado como posição superior do osso hioide (Grupo HS) e valores maiores a 4,6 mm como posição inferior do osso (Grupo HI). A atividade dos músculos supra-hioideos e infra-hioideos foi avaliada por meio da eletromiografia nas seguintes condições: repouso, isometria, protrusão, ápice da língua sobre o palato mole e deglutição. A comparação da raiz média quadrada (RMS) entre os grupos mostrou diferença significativa apenas para o movimento de protrusão. Este resultado poderia indicar uma maior sensibilidade dos fusos neuromusculares dos músculos supra-hioideos frente ao alongamento no grupo HS. Conclui-se que o os voluntários que tem o osso hioide numa posição superior apresentaram maior atividade dos músculos supra-hioide quando realizaram o movimento de protrusão
Abstract: The hyoid bone is a U-shaped bone and does not articulate with any other bone. He is located in front of the neck and participates in important functions such as swallowing, speaking, chewing and breathing. To remains stable, he is suspended by ligaments, fascia and muscles, as supra-hyoid and hyoid infra-hyoid muscles. Several studies in people without dental, skeletal or functional problems showed that hyoid bone is located in a lower position in men than in women, but not always he is in this position in all men. The aim of this study was to determine if the position of the hyoid bone interfere in electromyography activity of the supra hyoid and infra hyoid muscles. We selected voluntarily, 16 men skeletal Class I, without DTM, visual or mouth breathing problems. To assess the hyoid bone position were taken lateral radiographs of all volunteers and was assessed the hyoid triangle, too. To determine the vertical position of hyoid bone, it was considered the height of the hyoid triangle; values less than 3.4 was considered as upper position of the hyoid bone (Group UH) and values greater than 4.6 as lower position of the hyoid bone (Group LH). The activity of the supra hyoid and infra hyoid muscles were assessed by electromyography in following conditions: rest, isometrics, protrusion, tongue tip on the soft palate and swallowing. The comparison of the root mean square (RMS) between the groups showed a significant difference only for the movement of protrusion. This result could indicate a greater sensitivity of the neuromuscular spindles of supra hyoid muscles. We concluded that the volunteers that have upper position of hyoid bone showed higher activity of supra hyoid muscle when performed the protrusion movement
Mestrado
Anatomia
Mestre em Biologia Buco-Dental
Stewart, Kevin Matthew. "MECHANICAL SIMULATION OF ARTICULAR CARTILAGE BASED ON EXPERIMENTAL RESULTS." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/93.
Повний текст джерелаSchroeck, Christopher A. "A Reticulation of Skin-Applied Strain Sensors for Motion Capture." Cleveland State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=csu1560294990047589.
Повний текст джерелаКниги з теми "Applied biomechanics"
Applied biomechanics: Concepts and connections. United States: Wadsworth Publ Co, 2008.
Знайти повний текст джерелаBergmann, G., R. Kölbel, and A. Rohlmann, eds. Biomechanics: Basic and Applied Research. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2.
Повний текст джерела1945-, Elliott Bruce, and Bloomfield J. 1932-, eds. Applied anatomy and biomechanics in sport. 2nd ed. Champaign, IL: Human Kinetics, 2009.
Знайти повний текст джерела1932-, Bloomfield J., Ackland Timothy R. 1958-, and Elliott Bruce Ph D, eds. Applied anatomy and biomechanics in sport. Melbourne, Australia: Blackwell Scientific Publications, 1994.
Знайти повний текст джерелаAndreaus, Ugo. Biomedical Imaging and Computational Modeling in Biomechanics. Dordrecht: Springer Netherlands, 2013.
Знайти повний текст джерела(1991, Biomechanics Symposium. 1991 Biomechanics Symposium: Presented at the ASME Applied Mechanics Conference, Columbus, Ohio, June 16-19, 1991. New York, N.Y: American Society of Mechanical Engineers, 1991.
Знайти повний текст джерелаJoachim, Hammer, Nerlich M, and Dendorfer Sebastian, eds. Medicine meets engineering: Proceedings of the 2nd Conference on Applied Biomechanics, Regensburg. Amsterdam: Ios Press, 2008.
Знайти повний текст джерелаHolzapfel, Gerhard A. Computer Models in Biomechanics: From Nano to Macro. Dordrecht: Springer Netherlands, 2013.
Знайти повний текст джерелаBiomechanics of the hip: As applied to osteoarthritis and related conditions. Berlin: Springer-Verlag, 1985.
Знайти повний текст джерелаЧастини книг з теми "Applied biomechanics"
Arts, T., and R. S. Reneman. "Cardiovascular Biomechanics." In Biomechanics: Basic and Applied Research, 73–84. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_6.
Повний текст джерелаFriedebold, G., and R. Wolff. "Biomechanics in Orthopaedics." In Biomechanics: Basic and Applied Research, 3–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_1.
Повний текст джерелаHazari, Animesh, Arun G. Maiya, and Taral V. Nagda. "Applied Kinesiology in Sports." In Conceptual Biomechanics and Kinesiology, 225–29. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4991-2_18.
Повний текст джерелаPreziosi, Luigi. "Cell Migration, Biomechanics." In Encyclopedia of Applied and Computational Mathematics, 189–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_69.
Повний текст джерелаArchila-Diaz, J. F., I. L. Argote-Pedraza, R. Bortholin, R. Rubin, J. N. Archila-Diaz, and M. L. Tronco. "Robotic kinematics applied to human biomechanics." In VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016, 345–48. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4086-3_87.
Повний текст джерелаWalker, P. S. "Biomechanics of Total Knee Replacement." In Biomechanics: Basic and Applied Research, 19–31. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_2.
Повний текст джерелаBaumann, W. "Biomechanics of Sports - Current Problems." In Biomechanics: Basic and Applied Research, 51–58. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_4.
Повний текст джерелаKiefer, H., L. Claes, and J. Holzwarth. "Biomechanics of the Acromioclavicular Stabilization." In Biomechanics: Basic and Applied Research, 465–70. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3355-2_65.
Повний текст джерелаBourgois, R., and J. Wagner. "Advances in Photoelasticity Applied to Biomechanical Problems." In Biomechanics: Current Interdisciplinary Research, 725–30. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7432-9_110.
Повний текст джерелаHazari, Animesh, Arun G. Maiya, and Taral V. Nagda. "Applied Biomechanics on Joint, Muscle, Tendon, and Ligament." In Conceptual Biomechanics and Kinesiology, 39–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4991-2_4.
Повний текст джерелаТези доповідей конференцій з теми "Applied biomechanics"
Lund, Marie, Fredrik Ståhl, and Mårten Gulliksson. "Regularity Aspects in Inverse Musculoskeletal Biomechanics." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990935.
Повний текст джерелаGalvão, José Rodolfo, Talita P. de Bastos, Carlos R. Zamarreño, John Canning, Cicero Martelli, and Jean Carlos Cardozo da Silva. "Smart Carbon Fiber Sensing Systems Applied to Biomechanics." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.jtu2a.9.
Повний текст джерелаPuchalski, Weslly, Viviana Cocco Mariani, Felipe Fidelis Schauenburg, and Leandro dos Santos Coelho. "Wavelet neural network approach applied to biomechanics of swimming." In 2013 13th UK Workshop on Computational Intelligence (UKCI). IEEE, 2013. http://dx.doi.org/10.1109/ukci.2013.6651308.
Повний текст джерелаSmith, C. J. "High-Speed Photography Applied To Biomechanics At The Csir." In 17th Int'l Conference on High Speed Photography and Photonics, edited by Donald Hollingworth and Maurice W. McDowell. SPIE, 1987. http://dx.doi.org/10.1117/12.975550.
Повний текст джерелаHisam, M. J., S. Sharif, M. A. Suhaimi, D. Kurniawan, F. M. Nor, and Z. Shayfull. "Peri-implant bone biomechanics featuring short implant design." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118067.
Повний текст джерелаSilva, Rui, Sandra Amado, Filipa João, Pedro Morouço, Paula Pascoal-Faria, Nuno Alves, and António Veloso. "Biomechanics modeling for functional analysis: Sheep model." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5043812.
Повний текст джерелаLoke, Chai Yee, and Ean Hin Ooi. "Influential factors in optic nerve head biomechanics." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026891.
Повний текст джерелаFourcaud, Thierry, Thomas Guillon, Yves Dumont, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Biomechanics of Growing Trees: Mathematical Model, Numerical Resolution and Perspectives." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636836.
Повний текст джерелаGALLO, L. M. "VIRTUAL BIOMECHANICS: NON INVASIVE DYNAMIC INSIGHTS INTO THE MASTICATORY SYSTEM." In Proceedings of the Third Australasian Congress on Applied Mechanics. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777973_0003.
Повний текст джерелаRadcliffe, Nicholas R., David R. Easterling, Layne T. Watson, Michael L. Madigan, and Kathleen A. Bieryla. "Results of two global optimization algorithms applied to a problem in biomechanics." In the 2010 Spring Simulation Multiconference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1878537.1878627.
Повний текст джерела