Зміст
Добірка наукової літератури з теми "Apprentissage par renforcement non supervisé"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Apprentissage par renforcement non supervisé".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Apprentissage par renforcement non supervisé"
Toillier, Aurélie, Agathe Devaux-Spartakis, Guy Faure, Danielle Barret, and Catherine Marquié. "Comprendre la contribution de la recherche à l'innovation collective par l'exploration de mécanismes de renforcement de capacité." Cahiers Agricultures 27, no. 1 (December 21, 2017): 15002. http://dx.doi.org/10.1051/cagri/2017055.
Повний текст джерелаDegris, Thomas, Olivier Sigaud, and Pierre-Henri Wuillemin. "Apprentissage par renforcement factorisé pour le comportement de personnages non joueurs." Revue d'intelligence artificielle 23, no. 2-3 (May 13, 2009): 221–51. http://dx.doi.org/10.3166/ria.23.221-251.
Повний текст джерелаShaffer, Ryan, and Benjamin Shearn. "Performing Unsupervised Machine Learning on Intelligence: An Analysis of Colonial Kenya Reports." Études françaises de renseignement et de cyber N° 2, no. 1 (June 4, 2024): 211–38. http://dx.doi.org/10.3917/efrc.232.0211.
Повний текст джерелаDechemi, N., T. Benkaci, and A. Issolah. "Modélisation des débits mensuels par les modèles conceptuels et les systèmes neuro-flous." Revue des sciences de l'eau 16, no. 4 (April 12, 2005): 407–24. http://dx.doi.org/10.7202/705515ar.
Повний текст джерелаVillatte, Matthieu, David Scholiers, and Esteve Freixa i Baqué. "Apprentissage du comportement optimal par exposition aux contingences dans le dilemme de Monty Hall." ACTA COMPORTAMENTALIA 12, no. 1 (June 1, 2004): 5–24. http://dx.doi.org/10.32870/ac.v12i1.14548.
Повний текст джерелаJacopin, Eliott, Antoine Cornuéjols, Christine Martin, Farzaneh Kazemipour, and Christophe Sausse. "Détection automatique de plantes au sein d’images aériennes de champs par apprentissage non supervisé et approche multi-agents." Revue Ouverte d'Intelligence Artificielle 2, no. 1 (November 17, 2021): 123–56. http://dx.doi.org/10.5802/roia.12.
Повний текст джерелаScholiers, David, and Matthieu Villatte. "Comportement Non-optimal versus Illusion Cognitive." ACTA COMPORTAMENTALIA 11, no. 1 (June 1, 2003): 5–17. http://dx.doi.org/10.32870/ac.v11i1.14611.
Повний текст джерелаHeddam, Salim, Abdelmalek Bermad, and Noureddine Dechemi. "Modélisation de la dose de coagulant par les systèmes à base d’inférence floue (ANFIS) application à la station de traitement des eaux de Boudouaou (Algérie)." Revue des sciences de l’eau 25, no. 1 (March 28, 2012): 1–17. http://dx.doi.org/10.7202/1008532ar.
Повний текст джерелаDiumi Omokoko, Delvin. "Apprentissage par renforcement multi-agents pour la régulation de la circulation routière dans les carrefours : application à la mobilité urbaine dans la ville de Kinshasa." Journal Africain des Sciences 1, no. 2 (October 4, 2024): 36–47. https://doi.org/10.70237/jafrisci.2024.v1.i2.05.
Повний текст джерелаДисертації з теми "Apprentissage par renforcement non supervisé"
Chareyre, Maxime. "Apprentissage non-supervisé pour la découverte de propriétés d'objets par découplage entre interaction et interprétation." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2023. http://www.theses.fr/2023UCFA0122.
Повний текст джерелаRobots are increasingly used to achieve tasks in controlled environments. However, their use in open environments is still fraught with difficulties. Robotic agents are likely to encounter objects whose behaviour and function they are unaware of. In some cases, it must interact with these elements to carry out its mission by collecting or moving them, but without knowledge of their dynamic properties it is not possible to implement an effective strategy for resolving the mission.In this thesis, we present a method for teaching an autonomous robot a physical interaction strategy with unknown objects, without any a priori knowledge, the aim being to extract information about as many of the object's physical properties as possible from the interactions observed by its sensors. Existing methods for characterising objects through physical interactions do not fully satisfy these criteria. Indeed, the interactions established only provide an implicit representation of the object's dynamics, requiring supervision to identify their properties. Furthermore, the proposed solution is based on unrealistic scenarios without an agent. Our approach differs from the state of the art by proposing a generic method for learning interaction that is independent of the object and its properties, and can therefore be decoupled from the prediction phase. In particular, this leads to a completely unsupervised global pipeline.In the first phase, we propose to learn an interaction strategy with the object via an unsupervised reinforcement learning method, using an intrinsic motivation signal based on the idea of maximising variations in a state vector of the object. The aim is to obtain a set of interactions containing information that is highly correlated with the object's physical properties. This method has been tested on a simulated robot interacting by pushing and has enabled properties such as the object's mass, shape and friction to be accurately identified.In a second phase, we make the assumption that the true physical properties define a latent space that explains the object's behaviours and that this space can be identified from observations collected through the agent's interactions. We set up a self-supervised prediction task in which we adapt a state-of-the-art architecture to create this latent space. Our simulations confirm that combining the behavioural model with this architecture leads to the emergence of a representation of the object's properties whose principal components are shown to be strongly correlated with the object's physical properties.Once the properties of the objects have been extracted, the agent can use them to improve its efficiency in tasks involving these objects. We conclude this study by highlighting the performance gains achieved by the agent through training via reinforcement learning on a simplified object repositioning task where the properties are perfectly known.All the work carried out in simulation confirms the effectiveness of an innovative method aimed at autonomously discovering the physical properties of an object through the physical interactions of a robot. The prospects for extending this work involve transferring it to a real robot in a cluttered environment
Tarbouriech, Jean. "Goal-oriented exploration for reinforcement learning." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILB014.
Повний текст джерелаLearning to reach goals is a competence of high practical relevance to acquire for intelligent agents. For instance, this encompasses many navigation tasks ("go to target X"), robotic manipulation ("attain position Y of the robotic arm"), or game-playing scenarios ("win the game by fulfilling objective Z"). As a living being interacting with the world, I am constantly driven by goals to reach, varying in scope and difficulty.Reinforcement Learning (RL) holds the promise to frame and learn goal-oriented behavior. Goals can be modeled as specific configurations of the environment that must be attained via sequential interaction and exploration of the unknown environment. Although various deep RL algorithms have been proposed for goal-oriented RL, existing methods often lack principled understanding, sample efficiency and general-purpose effectiveness. In fact, very limited theoretical analysis of goal-oriented RL was available, even in the basic scenario of finitely many states and actions.We first focus on a supervised scenario of goal-oriented RL, where a goal state to be reached in minimum total expected cost is provided as part of the problem definition. After formalizing the online learning problem in this setting often known as Stochastic Shortest Path (SSP), we introduce two no-regret algorithms (one is the first available in the literature, the other attains nearly optimal guarantees).Beyond training our RL agent to solve only one task, we then aspire that it learns to autonomously solve a wide variety of tasks, in the absence of any reward supervision. In this challenging unsupervised RL scenario, we advocate to "Set Your Own Goals" (SYOG), which suggests the agent to learn the ability to intrinsically select and reach its own goal states. We derive finite-time guarantees of this popular heuristic in various settings, each with its specific learning objective and technical challenges. As an illustration, we propose a rigorous analysis of the algorithmic principle of targeting "uncertain" goals which we also anchor in deep RL.The main focus and contribution of this thesis are to instigate a principled analysis of goal-oriented exploration in RL, both in the supervised and unsupervised scenarios. We hope that it helps suggest promising research directions to improve the interpretability and sample efficiency of goal-oriented RL algorithms in practical applications
Merckling, Astrid. "Unsupervised pretraining of state representations in a rewardless environment." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS141.
Повний текст джерелаThis thesis seeks to extend the capabilities of state representation learning (SRL) to help scale deep reinforcement learning (DRL) algorithms to continuous control tasks with high-dimensional sensory observations (such as images). SRL allows to improve the performance of DRL by providing it with better inputs than the input embeddings learned from scratch with end-to-end strategies. Specifically, this thesis addresses the problem of performing state estimation in the manner of deep unsupervised pretraining of state representations without reward. These representations must verify certain properties to allow for the correct application of bootstrapping and other decision making mechanisms common to supervised learning, such as being low-dimensional and guaranteeing the local consistency and topology (or connectivity) of the environment, which we will seek to achieve through the models pretrained with the two SRL algorithms proposed in this thesis
Castanet, Nicolas. "Automatic state representation and goal selection in unsupervised reinforcement learning." Electronic Thesis or Diss., Sorbonne université, 2025. http://www.theses.fr/2025SORUS005.
Повний текст джерелаIn the past few years, Reinforcement Learning (RL) achieved tremendous success by training specialized agents owning the ability to drastically exceed human performance in complex games like Chess or Go, or in robotics applications. These agents often lack versatility, requiring human engineering to design their behavior for specific tasks with predefined reward signal, limiting their ability to handle new circumstances. This agent's specialization results in poor generalization capabilities, which make them vulnerable to small variations of external factors and adversarial attacks. A long term objective in artificial intelligence research is to move beyond today's specialized RL agents toward more generalist systems endowed with the capability to adapt in real time to unpredictable external factors and to new downstream tasks. This work aims in this direction, tackling unsupervised reinforcement learning problems, a framework where agents are not provided with external rewards, and thus must autonomously learn new tasks throughout their lifespan, guided by intrinsic motivations. The concept of intrinsic motivation arise from our understanding of humans ability to exhibit certain self-sufficient behaviors during their development, such as playing or having curiosity. This ability allows individuals to design and solve their own tasks, and to build inner physical and social representations of their environments, acquiring an open-ended set of skills throughout their lifespan as a result. This thesis is part of the research effort to incorporate these essential features in artificial agents, leveraging goal-conditioned reinforcement learning to design agents able to discover and master every feasible goals in complex environments. In our first contribution, we investigate autonomous intrinsic goal setting, as a versatile agent should be able to determine its own goals and the order in which to learn these goals to enhance its performances. By leveraging a learned model of the agent's current goal reaching abilities, we show that we can shape an optimal difficulty goal distribution, enabling to sample goals in the Zone of Proximal Development (ZPD) of the agent, which is a psychological concept referring to the frontier between what a learner knows and what it does not, constituting the space of knowledge that is not mastered yet but have the potential to be acquired. We demonstrate that targeting the ZPD of the agent's result in a significant increase in performance for a great variety of goal-reaching tasks. Another core competence is to extract a relevant representation of what matters in the environment from observations coming from any available sensors. We address this question in our second contribution, by highlighting the difficulty to learn a correct representation of the environment in an online setting, where the agent acquires knowledge incrementally as it make progresses. In this context, recent achieved goals are outliers, as there are very few occurrences of this new skill in the agent's experiences, making their representations brittle. We leverage the adversarial setting of Distributionally Robust Optimization in order for the agent's representations of such outliers to be reliable. We show that our method leads to a virtuous circle, as learning accurate representations for new goals fosters the exploration of the environment
Debard, Quentin. "Automatic learning of next generation human-computer interactions." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI036.
Повний текст джерелаArtificial Intelligence (AI) and Human-Computer Interactions (HCIs) are two research fields with relatively few common work. HCI specialists usually design the way we interact with devices directly from observations and measures of human feedback, manually optimizing the user interface to better fit users’ expectations. This process is hard to optimize: ergonomy, intuitivity and ease of use are key features in a User Interface (UI) that are too complex to be simply modelled from interaction data. This drastically restrains the possible uses of Machine Learning (ML) in this design process. Currently, ML in HCI is mostly applied to gesture recognition and automatic display, e.g. advertisement or item suggestion. It is also used to fine tune an existing UI to better optimize it, but as of now it does not participate in designing new ways to interact with computers. Our main focus in this thesis is to use ML to develop new design strategies for overall better UIs. We want to use ML to build intelligent – understand precise, intuitive and adaptive – user interfaces using minimal handcrafting. We propose a novel approach to UI design: instead of letting the user adapt to the interface, we want the interface and the user to adapt mutually to each other. The goal is to reduce human bias in protocol definition while building co-adaptive interfaces able to further fit individual preferences. In order to do so, we will put to use the different mechanisms available in ML to automatically learn behaviors, build representations and take decisions. We will be experimenting on touch interfaces, as these interfaces are vastly used and can provide easily interpretable problems. The very first part of our work will focus on processing touch data and use supervised learning to build accurate classifiers of touch gestures. The second part will detail how Reinforcement Learning (RL) can be used to model and learn interaction protocols given user actions. Lastly, we will combine these RL models with unsupervised learning to build a setup allowing for the design of new interaction protocols without the need for real user data
Buhot, Arnaud. "Etude de propriétés d'apprentissage supervisé et non supervisé par des méthodes de Physique Statistique." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00001642.
Повний текст джерелаBen-Fares, Maha. "Apprentissage de représentation non supervisé de flux de données textuelles." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1316.
Повний текст джерелаThis thesis presents an innovative methods for clustering text data streams and also introduces a system for identifying AI-generated text. This AI detection method can be used independently or as a preprocessing step to filter incoming documents, by removing AI-generated content, preserving the authenticity and validity of the information.Specifically, we develop a classification system that distinguishes between human-written and AI-generated text. This method employs a hierarchical fusion strategy that integrates representations from various layers of the BERT model. By focusing on syntactic features, our model classifies each token as either Human or AI, effectively capturing detailed text structures and ensuring robust performance across multiple languages using the XLM-RoBERTa-Large model.In the field of data stream clustering, particularly for textual data, we first introduce a method called OTTC (Online Topological Text Clustering). This approach leverages topological representation learning in combination with online clustering techniques. It effectively addresses the challenges in clustering textual data streams, such as data dynamism, sparsity, and the curse of dimensionality, which are issues that traditional clustering methods often struggle to manage.To further improve clustering results and address the limitations of OTTC, we propose the MVTStream algorithm, specifically designed for multi-view text data streams. This algorithm operates in three stages: First, it generates diverse text representations of incoming data, treating each representation as a separate view. Then, it employs micro-cluster data structures for real-time processing. Finally, it utilizes ensemble methods to aggregate clusters from the various views and get the final clusters
Chen, Hao. "Vers la ré-identification de personnes non-supervisée." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4014.
Повний текст джерелаAs a core component of intelligent video surveillance systems, person re-identification (ReID) targets at retrieving a person of interest across non-overlapping cameras. Despite significant improvements in supervised ReID, cumbersome annotation process makes it less scalable in real-world deployments. Moreover, as appearance representations can be affected by noisy factors, such as illumination level and camera properties, between different domains, person ReID models suffer a large performance drop in the presence of domain gaps. We are particularly interested in designing algorithms that can adapt a person ReID model to a target domain without human supervision. In such context, we mainly focus on designing unsupervised domain adaptation and unsupervised representation learning methods for person ReID.In this thesis, we first explore how to build robust representations by combining both global and local features under the supervised condition. Then, towards an unsupervised domain adaptive ReID system, we propose three unsupervised methods for person ReID, including 1) teacher-student knowledge distillation with asymmetric network structures for feature diversity encouragement, 2) joint generative and contrastive learning framework that generates augmented views with a generative adversarial network for contrastive learning, and 3) exploring inter-instance relations and designing relation-aware loss functions for better contrastive learning based person ReID.Our methods have been extensively evaluated on main-stream ReID datasets, such as Market-1501, DukeMTMC-reID and MSMT17. The proposed methods significantly outperform previous methods on the ReID datasets, significantly pushing person ReID to real-world deployments
Dutech, Alain. "Apprentissage par Renforcement : Au delà des Processus Décisionnels de Markov (Vers la cognition incarnée)." Habilitation à diriger des recherches, Université Nancy II, 2010. http://tel.archives-ouvertes.fr/tel-00549108.
Повний текст джерелаLefort, Mathieu. "Apprentissage spatial de corrélations multimodales par des mécanismes d'inspiration corticale." Phd thesis, Université Nancy II, 2012. http://tel.archives-ouvertes.fr/tel-00756687.
Повний текст джерела