Добірка наукової літератури з теми "Arithmetic Statistical Convergence"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Arithmetic Statistical Convergence".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Arithmetic Statistical Convergence"

1

Huban, Mualla, and Mehmet Gurdal. "On invariant arithmetic statistically convergence via weighted density." Ilirias Journal of Mathematics 9, no. 1 (2021): 23–34. http://dx.doi.org/10.54379/ijm-2021-1-2.

Повний текст джерела
Анотація:
In this paper, our concern is to introduce the concepts of invariant arithmetic convergence, invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence using weighted density via Orlicz function φe. Finally, we give some relations between lacunary invariant arithmetic statistical φe-convergence and invariant arithmetic statistical φe-convergence via weighted density
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huban, Mualla, and Mehmet Gurdal. "On invariant arithmetic statistically convergence via weighted density." Ilirias Journal of Mathematics 9, no. 1 (2021): 23–34. http://dx.doi.org/10.54379/ijm-2021-9-2.

Повний текст джерела
Анотація:
In this paper, our concern is to introduce the concepts of invariant arithmetic convergence, invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence using weighted density via Orlicz function φe. Finally, we give some relations between lacunary invariant arithmetic statistical φe-convergence and invariant arithmetic statistical φe-convergence via weighted density.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yaying, Taja, and Bipan Hazarika. "Lacunary Arithmetic Statistical Convergence." National Academy Science Letters 43, no. 6 (2020): 547–51. http://dx.doi.org/10.1007/s40009-020-00910-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A. Esi, N. Subramanian, and Ayten Esi. "Arithmetic rough statistical convergence for triple sequences." ANNALS OF FUZZY MATHEMATICS AND INFORMATICS 17, no. 3 (2019): 265–77. http://dx.doi.org/10.30948/afmi.2019.17.3.265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Totur, Ümit, and İbrahim Çanak. "Tauberian theorems for the statistical convergence and the statistical (C,1,1) summability." Filomat 32, no. 1 (2018): 101–16. http://dx.doi.org/10.2298/fil1801101t.

Повний текст джерела
Анотація:
Every P-convergent double sequence is statistically convergent and every bounded statistically convergent sequence is statistical (C,1,1) summable. The converse of these implications are not always true. Theorems on which conditioned converses are searched are known as Tauberian theorems. Inspired by the convergence to zero of the difference sequence between a sequence and its arithmetic means in the single sequence case, we obtain Tauberian theorems for the statistical convergence and statistical (C,1,1) summability method by imposing some conditions on the difference sequence between a doubl
Стилі APA, Harvard, Vancouver, ISO та ін.
6

M., M. Karagama, and B. Ladan F. "ON LACUNARY ARITHMETIC STATISTICAL CONTINUITY FOR DOUBLE SEQUENCES." International Journal of Research - Granthaalayah 5, no. 11 (2017): 22–26. https://doi.org/10.5281/zenodo.1065890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saeed K, Muhammed, Krishnendu Remesh, Santhosh George, Jidesh Padikkal, and Ioannis K. Argyros. "Local Convergence of Traub’s Method and Its Extensions." Fractal and Fractional 7, no. 1 (2023): 98. http://dx.doi.org/10.3390/fractalfract7010098.

Повний текст джерела
Анотація:
In this article, we examine the local convergence analysis of an extension of Newton’s method in a Banach space setting. Traub introduced the method (also known as the Arithmetic-Mean Newton’s Method and Weerakoon and Fernando method) with an order of convergence of three. All the previous works either used higher-order Taylor series expansion or could not derive the desired order of convergence. We studied the local convergence of Traub’s method and two of its modifications and obtained the convergence order for these methods without using Taylor series expansion. The radii of convergence, ba
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BOLTE, JENS. "SOME STUDIES ON ARITHMETICAL CHAOS IN CLASSICAL AND QUANTUM MECHANICS." International Journal of Modern Physics B 07, no. 27 (1993): 4451–553. http://dx.doi.org/10.1142/s0217979293003759.

Повний текст джерела
Анотація:
Several aspects of classical and quantum mechanics applied to a class of strongly chaotic systems are studied. The latter consists of single particles moving without external forces on surfaces of constant negative Gaussian curvature whose corresponding fundamental groups are supplied with an arithmetic structure. It is shown that the arithmetical features of the considered systems lead to exceptional properties of the corresponding spectra of lengths of closed geodesics (periodic orbits). The most significant one is an exponential growth of degeneracies in these geodesic length spectra. Furth
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Deb, Rajat, and Joydeep Das. "IFRSs Convergence and Expectation Gap: Vindication from Practitioners." Metamorphosis: A Journal of Management Research 17, no. 2 (2018): 86–99. http://dx.doi.org/10.1177/0972622518816211.

Повний текст джерела
Анотація:
The study has attempted to measure the Indian practitioners’ expectation gaps about IFRSs convergence. Based on literature, two hypotheses, a conceptual model and a questionnaire, have been formed. Through protocol interviews followed by a pretest, the questionnaire has been tested (reliability and validity) before conducting the online survey. A total of 159 sample responses has been assessed to measure the gaps on four major parameters. For assaying the gaps, the arithmetic and weighted arithmetic mean differences and paired sample t-test have been applied, which have indicated the likely pe
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eker, Erdal, Davut Izci, Serdar Ekinci, Mohammad Shukri Salman, and Mostafa Rashdan. "Performance evaluation of logarithmic spiral search and selective mechanism based arithmetic optimizer for parameter extraction of different photovoltaic cell models." PLOS ONE 19, no. 7 (2024): e0308110. http://dx.doi.org/10.1371/journal.pone.0308110.

Повний текст джерела
Анотація:
The imperative shift towards renewable energy sources, driven by environmental concerns and climate change, has cast a spotlight on solar energy as a clean, abundant, and cost-effective solution. To harness its potential, accurate modeling of photovoltaic (PV) systems is crucial. However, this relies on estimating elusive parameters concealed within PV models. This study addresses these challenges through innovative parameter estimation by introducing the logarithmic spiral search and selective mechanism-based arithmetic optimization algorithm (Ls-AOA). Ls-AOA is an improved version of the ari
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Arithmetic Statistical Convergence"

1

Voronin, Evgeniy, Aleksandr Chibunichev, and Yuriy Blohinov. Reliability of solving inverse problems of analytical photogrammetry. INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2010462.

Повний текст джерела
Анотація:
The monograph is devoted to computational aspects of photogrammetric reconstruction of narrow-angle bundles of projecting beams that existed during the survey. Methods of improving the conditionality of systems of linear equations, ensuring the convergence of iterative refinement of their roots, increasing the stability of calculations in finite precision machine arithmetic are considered. The main efforts are focused on solving the problem of establishing reliable measurement weights within the framework of the least squares method. The criteria for the reliability of the weights are determin
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Arithmetic Statistical Convergence"

1

Kisi, Omer, and Erhan Guler. "Results on Arithmetic Statistically Convergence of Double Sequences on Intuitionistic Fuzzy Normed Spaces." In Advances in Algebra Analysis and Topology. Chapman and Hall/CRC, 2024. http://dx.doi.org/10.1201/9781032634142-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baláž, Vladimír, and Tomáš Visnyai. "I–Convergence of Arithmetical Functions." In Number Theory and Its Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91932.

Повний текст джерела
Анотація:
Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-kn
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Arithmetic Statistical Convergence"

1

Ahmed, F., A. A. S. Awwal, and P. Chen. "Experiment with the storage capacity and shift invariance of trinary associative memory for character recognition." In OSA Annual Meeting. Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thx6.

Повний текст джерела
Анотація:
Character recognition by a trinary associative memory (TAM) neural network model is proposed. All the twenty-six letters of the English alphabet are stored in the trinary memory. The proposed scheme will then be able to recognize a character from its partial input. The dot product of the partial input with all the stored patterns is calculated as a measure of discrepancy from the desired pattern. Zero thresholding and arithmetic mean thresholding and some other statistical thresholding methods are then applied to select the desired output. The convergence of the recall procedure of the TAM net
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!