Добірка наукової літератури з теми "Atmospheric Energy Fluxes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Atmospheric Energy Fluxes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Atmospheric Energy Fluxes":

1

Sun, Jielun. "Incorporating the Work Done by Vertical Density Fluxes in Both Kinetic and Thermal Energy Conservation Equations to Satisfy Total Energy Conservation." Journal of Applied Meteorology and Climatology 58, no. 2 (February 2019): 213–30. http://dx.doi.org/10.1175/jamc-d-17-0350.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractConservation of total, kinetic, and thermal energy in the atmosphere is revisited, and the derived thermal energy balance is examined with observations. Total energy conservation (TEC) provides a constraint for the sum of kinetic, thermal, and potential energy changes. In response to air thermal expansion/compression, air density variation leads to vertical density fluxes and potential energy changes, which in turn impact the thermal energy balance as well as the kinetic energy balance due to the constraint of TEC. As vertical density fluxes can propagate through a large vertical domain to where local thermal expansion/compression becomes negligibly small, interactions between kinetic and thermal energy changes in determining atmospheric motions and thermodynamic structures can occur when local diabatic heating/cooling becomes small. The contribution of vertical density fluxes to the kinetic energy balance is sometimes considered but that to the thermal energy balance is traditionally missed. Misinterpretation between air thermal expansion/compression and incompressibility for air volume changes with pressure under a constant temperature would lead to overlooking important impacts of thermal expansion/compression on air motions and atmospheric thermodynamics. Atmospheric boundary layer observations qualitatively confirm the contribution of potential energy changes associated with vertical density fluxes in the thermal energy balance for explaining temporal variations of air temperature.
2

Barr, Giles. "Atmospheric Neutrino Fluxes." Nuclear Physics B - Proceedings Supplements 143 (June 2005): 89–95. http://dx.doi.org/10.1016/j.nuclphysbps.2005.01.092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gaisser, Thomas K. "Atmospheric neutrino fluxes." Nuclear Physics B - Proceedings Supplements 118 (April 2003): 109–17. http://dx.doi.org/10.1016/s0920-5632(03)01309-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bannon, Peter R. "Atmospheric Available Energy." Journal of the Atmospheric Sciences 69, no. 12 (December 1, 2012): 3745–62. http://dx.doi.org/10.1175/jas-d-12-059.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The total potential energy of the atmosphere is the sum of its internal and gravitational energies. The portion of this total energy available to be converted into kinetic energy is determined relative to an isothermal, hydrostatic, equilibrium atmosphere that is convectively and dynamically “dead.” The temperature of this equilibrium state is determined by minimization of a generalized Gibbs function defined between the atmosphere and its equilibrium. Thus, this function represents the maximum amount of total energy that can be converted into kinetic energy and, hence, the available energy of the atmosphere. This general approach includes the effects of terrain, moisture, and hydrometeors. Applications are presented for both individual soundings and idealized baroclinic zones. An algorithm partitions the available energy into available baroclinic and available convective energies. Estimates of the available energetics of the general circulation suggest that atmospheric motions are primarily driven by moist and dry fluxes of exergy from the earth’s surface with an efficiency of about two-thirds.
5

Shaffrey, Len, and Rowan Sutton. "Bjerknes Compensation and the Decadal Variability of the Energy Transports in a Coupled Climate Model." Journal of Climate 19, no. 7 (April 1, 2006): 1167–81. http://dx.doi.org/10.1175/jcli3652.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. The degree of compensation in the northern extratropics was found to increase with increasing time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland–Iceland–Norwegian (GIN) Seas, which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.
6

Mayer, Michael, Leopold Haimberger, John M. Edwards, and Patrick Hyder. "Toward Consistent Diagnostics of the Coupled Atmosphere and Ocean Energy Budgets." Journal of Climate 30, no. 22 (November 2017): 9225–46. http://dx.doi.org/10.1175/jcli-d-17-0137.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The widely used diagnostic vertically integrated total energy budget equations of atmosphere and ocean contain inconsistencies that should no longer be disregarded. The neglect of enthalpy fluxes associated with precipitation and evaporation leads to a spurious dependence on reference temperature. This seemingly small inconsistency is amplified because enthalpy of water vapor implicitly included in lateral atmospheric energy transports usually is computed on the Kelvin scale, leading to inconsistencies that, although zero when globally averaged, attain values on the order of 20 W m−2 in the tropics. A more consistent energy budget framework is presented, which is independent of reference temperature and which takes full account of enthalpy fluxes associated with mass transfer through the surface. The latter include effects of snowfall and additional nonlatent contributions, which have a net cooling effect on the earth’s surface (−1.3 W m−2). In addition to these diagnostic issues, comparatively small inconsistencies in the energetic formulations of current weather and climate models are highlighted. Using the energy budget formulation presented here, instead of that commonly used, yields enhanced self-consistency of diagnosed atmospheric energy budgets and substantially improved spatial agreement between fields of net surface energy flux inferred from the divergence of lateral atmospheric energy transports in conjunction with satellite-based radiative fluxes and independent surface flux products. Results imply that previous estimates of radiative plus turbulent surface fluxes over the ocean, balancing the observed ocean warming, are biased low by ~1.3 W m−2. Moreover, previous studies seriously underestimated cross-equatorial atmospheric and oceanic energy transports. Overall, the presented framework allows for unambiguous coupled energy budget diagnostics and yields more reliable benchmark values for validation purposes.
7

Gilchrist-Millar, Caitlin A., David B. Jess, Samuel D. T. Grant, Peter H. Keys, Christian Beck, Shahin Jafarzadeh, Julia M. Riedl, Tom Van Doorsselaere, and Basilio Ruiz Cobo. "Magnetoacoustic wave energy dissipation in the atmosphere of solar pores." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2190 (December 21, 2020): 20200172. http://dx.doi.org/10.1098/rsta.2020.0172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The suitability of solar pores as magnetic wave guides has been a key topic of discussion in recent years. Here, we present observational evidence of propagating magnetohydrodynamic wave activity in a group of five photospheric solar pores. Employing data obtained by the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope, oscillations with periods of the order of 5 min were detected at varying atmospheric heights by examining Si ɪ 10827 Å line bisector velocities. Spectropolarimetric inversions, coupled with the spatially resolved root mean square bisector velocities, allowed the wave energy fluxes to be estimated as a function of atmospheric height for each pore. We find propagating magnetoacoustic sausage mode waves with energy fluxes on the order of 30 kW m −2 at an atmospheric height of 100 km, dropping to approximately 2 kW m −2 at an atmospheric height of around 500 km. The cross-sectional structuring of the energy fluxes reveals the presence of both body- and surface-mode sausage waves. Examination of the energy flux decay with atmospheric height provides an estimate of the damping length, found to have an average value across all five pores of L d ≈ 268 km, similar to the photospheric density scale height. We find the damping lengths are longer for body mode waves, suggesting that surface mode sausage oscillations are able to more readily dissipate their embedded wave energies. This work verifies the suitability of solar pores to act as efficient conduits when guiding magnetoacoustic wave energy upwards into the outer solar atmosphere. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.
8

Donohoe, Aaron, and David S. Battisti. "The Seasonal Cycle of Atmospheric Heating and Temperature." Journal of Climate 26, no. 14 (July 12, 2013): 4962–80. http://dx.doi.org/10.1175/jcli-d-12-00713.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The seasonal cycle of the heating of the atmosphere is divided into a component due to direct solar absorption in the atmosphere and a component due to the flux of energy from the surface to the atmosphere via latent, sensible, and radiative heat fluxes. Both observations and coupled climate models are analyzed. The vast majority of the seasonal heating of the northern extratropics (78% in the observations and 67% in the model average) is due to atmospheric shortwave absorption. In the southern extratropics, the seasonal heating of the atmosphere is entirely due to atmospheric shortwave absorption in both the observations and the models, and the surface heat flux opposes the seasonal heating of the atmosphere. The seasonal cycle of atmospheric temperature is surface amplified in the northern extratropics and nearly barotropic in the Southern Hemisphere; in both cases, the vertical profile of temperature reflects the source of the seasonal heating. In the northern extratropics, the seasonal cycle of atmospheric heating over land differs markedly from that over the ocean. Over the land, the surface energy fluxes complement the driving absorbed shortwave flux; over the ocean, they oppose the absorbed shortwave flux. This gives rise to large seasonal differences in the temperature of the atmosphere over land and ocean. Downgradient temperature advection by the mean westerly winds damps the seasonal cycle of heating of the atmosphere over the land and amplifies it over the ocean. The seasonal cycle in the zonal energy transport is 4.1 PW. Finally, the authors examine the change in the seasonal cycle of atmospheric heating in 11 models from phase 3 of the Coupled Model Intercomparison Project (CMIP3) due to a doubling of atmospheric carbon dioxide from preindustrial concentrations. The seasonal heating of the troposphere is everywhere enhanced by increased shortwave absorption by water vapor; it is reduced where sea ice has been replaced by ocean, which increases the effective heat storage reservoir of the climate system and thereby reduces the seasonal magnitude of energy fluxes between the surface and the atmosphere. As a result, the seasonal amplitude of temperature increases in the upper troposphere (where atmospheric shortwave absorption increases) and decreases at the surface (where the ice melts).
9

Pendergrass, Angeline G., and Dennis L. Hartmann. "The Atmospheric Energy Constraint on Global-Mean Precipitation Change." Journal of Climate 27, no. 2 (January 15, 2014): 757–68. http://dx.doi.org/10.1175/jcli-d-13-00163.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) robustly predict that the rate of increase in global-mean precipitation with global-mean surface temperature increase is much less than the rate of increase of water vapor. The goal of this paper is to explain in detail the mechanisms by which precipitation increase is constrained by radiative cooling. Changes in clear-sky atmospheric radiative cooling resulting from changes in temperature and humidity in global warming simulations are in good agreement with the multimodel, global-mean precipitation increase projected by GCMs (~1.1 W m−2 K−1). In an atmosphere with fixed specific humidity, radiative cooling from the top of the atmosphere (TOA) increases in response to a uniform temperature increase of the surface and atmosphere, while atmospheric cooling by exchange with the surface decreases because the upward emission of longwave radiation from the surface increases more than the downward longwave radiation from the atmosphere. When a fixed relative humidity (RH) assumption is made, however, uniform warming causes a much smaller increase of cooling at the TOA, and the surface contribution reverses to an increase in net cooling rate due to increased downward emission from water vapor. Sensitivity of precipitation changes to lapse rate changes is modest when RH is fixed. Carbon dioxide reduces TOA emission with only weak effects on surface fluxes, and thus suppresses precipitation. The net atmospheric cooling response and thereby the precipitation response to CO2-induced warming at fixed RH are mostly contributed by changes in surface fluxes. The role of clouds is discussed. Intermodel spread in the rate of precipitation increase across the CMIP5 simulations is attributed to differences in the atmospheric cooling.
10

Chen, Baozhang, Jing M. Chen, Gang Mo, Chiu-Wai Yuen, Hank Margolis, Kaz Higuchi, and Douglas Chan. "Modeling and Scaling Coupled Energy, Water, and Carbon Fluxes Based on Remote Sensing: An Application to Canada’s Landmass." Journal of Hydrometeorology 8, no. 2 (April 1, 2007): 123–43. http://dx.doi.org/10.1175/jhm566.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Land surface models (LSMs) need to be coupled with atmospheric general circulation models (GCMs) to adequately simulate the exchanges of energy, water, and carbon between the atmosphere and terrestrial surfaces. The heterogeneity of the land surface and its interaction with temporally and spatially varying meteorological conditions result in nonlinear effects on fluxes of energy, water, and carbon, making it challenging to scale these fluxes accurately. The issue of up-scaling remains one of the critical unsolved problems in the parameterization of subgrid-scale fluxes in coupled LSM and GCM models. A new distributed LSM, the Ecosystem–Atmosphere Simulation Scheme (EASS) was developed and coupled with the atmospheric Global Environmental Multiscale model (GEM) to simulate energy, water, and carbon fluxes over Canada’s landmass through the use of remote sensing and ancillary data. Two approaches (lumped case and distributed case) for handling subgrid heterogeneity were used to evaluate the effect of land-cover heterogeneity on regional flux simulations based on remote sensing. Online runs for a week in August 2003 provided an opportunity to investigate model performance and spatial scaling issues. Comparisons of simulated results with available tower observations (five sites) across an east–west transect over Canada’s southern forest regions indicate that the model is reasonably successful in capturing both the spatial and temporal variations in carbon and energy fluxes, although there were still some biases in estimates of latent and sensible heat fluxes between the simulations and the tower observations. Moreover, the latent and sensible heat fluxes were found to be better modeled in the coupled EASS–GEM system than in the uncoupled GEM. There are marked spatial variations in simulated fluxes over Canada’s landmass. These patterns of spatial variation closely follow vegetation-cover types as well as leaf area index, both of which are highly correlated with the underlying soil types, soil moisture conditions, and soil carbon pools. The surface fluxes modeled by the two up-scaling approaches (lumped and distributed cases) differ by 5%–15% on average and by up to 15%–25% in highly heterogeneous regions. This suggests that different ways of treating subgrid land surface heterogeneities could lead to noticeable biases in model output.

Дисертації з теми "Atmospheric Energy Fluxes":

1

Ramstrom, William D. (William Douglas). "Tropical cyclone momentum and energy fluxes." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/59095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2001.
Includes bibliographical references (leaves 82-84).
Many modeling studies of tropical cyclones use the bulk aerodynamic formulae to determine angular momentum and enthalpy fluxes at the sea surface. These results show that the intensification of a hurricane is very sensitive to the values of the coefficients defined in these formulae (Emanuel, 1995). Using these formulae allows the model to make bulk estimates of these fluxes as a function of wind speed, without having to consider the full complexity of the physics of the air-sea interface. Generally, a complete treatment of fluxes would require modeling a number of small-scale physical processes, e.g. wave field response to the duration and fetch of the wind, sea spray processes, and convective stability of the boundary layer. The coefficients to these equations, Cd and Ck, have been empirically determined in previous studies, either by direct measurements on platforms and ships (Large and Pond, 1981), or by budget analyses from airborne data. However, these studies do not provide results for the high winds speeds encountered in strong hurricanes. Previous work has suggested that the coefficients do not remain constant, but rather are a function of wind speed. Producing values for these coefficients at high wind speeds will improve the accuracy of the numerical models. Recent advances in dropsonde technology (Hock and Franklin, 1999) provide improved range and accuracy from earlier methods, with reliable measurements of wind and thermodynamic variables down to within 10m of the surface. Three cases of strong hurricanes have been selected for this study, allowing analysis of these coefficients for conditions with up to 65 ms- 1 surface winds. The values of the drag coefficient, Cd, are demonstrated to reach a maximum value at about hurricane force, then maintain that value with higher wind speeds. The values of Ck, the heat flux coefficient, do not show variation with wind speed. These coefficients are calculated both at the standard 10m, so that they may be compared with existing literature, and at the top of the boundary layer, so that models which do not explicitly resolve the physics of the boundary layer may nonetheless make use of this data. The budget calculations in this study have shown that the 10m drag coefficient has a value of 0.0026 to 0.0030 for wind speeds in the 40-60 ms- 1 range. Eddy fluxes of total energy and entropy are also shown to be significant. With this effect added, budget calculations have shown that the 10m enthalpy transfer coefficient ranges from 0.0029 to 0.0036 under these conditions for Floyd and Georges. Thus, the ratio of Ck/Cd is slightly larger than 1.0. At the gradient wind level, Cd is 0.0019 ± 0.0010 and Ck is approximately 0.0018.
by William Douglas Ramstrom.
S.M.
2

Zhang, Jun. "An Airborne Investigation of the Atmospheric Boundary Layer Structure in the Hurricane Force Wind Regime." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As part of the ONR sponsored Coupled Boundary Layer/Air-Sea Transfer (CBLAST) experiment, data from the NOAA WP-3D research aircraft measurements into major Hurricanes in the 2002-2004 seasons are analyzed to investigate the structure of the boundary layer. The turbulent fluxes of momentum and enthalpy are derived using the eddy correlation method. For the first time, the momentum and enthalpy fluxes were directly measured in the boundary layer of a hurricane with wind speeds up to 30 m/s. A new bulk parameterization of the momentum and enthalpy flux is developed. The vertical structure of turbulence and fluxes are presented for the entire boundary layer in the rain free region between the outer rainbands. The turbulent kinetic energy budget was estimated for the hurricane boundary layer between the outer rainbands. The universal spectra and cospectra of the wind velocity, temperature and humidity are also derived. A case study on the effects of roll vortices on the turbulent fluxes is conducted, which confirmed the existence of the boundary layer rolls and gave the first estimate of their modulation of the momentum and sensible heat flux. The CBLAST data provided an invaluable perspective on the evaluation and development of the boundary layer parameterization suited for the hurricane models. Studies on entrainment processes above of the mixed layer and turbulent transport processes induced by the inflow are recommended in the future.
3

Burnett, Benjamin F. "Exploratory Eddy Covariance Measurements of Surface Heat and CO2 Fluxes in the Roughness Sublayer of an Urban Environment." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study eddy covariance was used to measure sensible heat, latent heat, and carbon dioxide fluxes for the months of August, September, and October of 2009 within the roughness sublayer (RSL) of the urban center of Portland, OR. Vehicle traffic and solar radiation were also measured for the month of October. Flux measurements were compared with measurements from other urban areas as a test of reasonableness. CO₂ fluxes were nearly always positive and were strongly correlated with the weekday diurnal traffic cycle. CO₂ fluxes averaged 6.6 μmol/m^²s, which is less than other published measurements in urban areas. Sensible and latent heat fluxes followed the expected diurnal profile associated with solar radiation. Average sensible heat flux decreased as the season changed from summer to fall, moving from an average of 39 W/m^² in August to 12 W/m^² in October. A corresponding increase in latent heat flux was observed during this period, changing from an average of 10 W/m^² in August to 17 W/m^² in October. Heat flux behavior and amplitude was consistent with other urban measurements, though amplitude varies considerably from city to city. Stationarity was shown to positively influence measured CO₂ fluxes, but to have little effect on measured heat fluxes. Preliminary comparisons of October sensible heat and CO₂ fluxes to an inventory-based estimate of vehicle emissions indicate that eddy covariance measurements underestimate the true fluxes by 50%.
4

Arsego, Diogo Alessandro. "FLUXOS DE CALOR E TRANSFERÊNCIA DE ENERGIA CALORÍFICA ENTRE O OCEANO E A ATMOSFERA SOBRE ESTRUTURAS OCEÂNICAS DE MESOESCALA NO ATLÂNTICO SUL." Universidade Federal de Santa Maria, 2012. http://repositorio.ufsm.br/handle/1/10263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Understanding the interactions between ocean and atmosphere in regions of oceanographic fronts is of vital importance for the improvement of numerical models for weather and climate forecasting. In the South Atlantic Ocean (SAO) the meeting between the warm waters of the Brazil Current (BC) and the cold waters of the Malvinas (Falkland) Current (MC) in the region known as the Brazil-Malvinas Confluence (BMC), results in intense mesoscale oceanic activity and, for this reason, this region is considered one of the most energetic of the Global Ocean. The interactions resulting from the thermal contrast in regions oceanographic fronts of the OAS are investigated in this work through estimates of heat fluxes based on data collected in situ and by satellite. The results of this study show that the response to the thermal contrasts found in the ocean is in the form of heat fluxes and these fluxes are critical in modulating the atmospheric boundary layer (ABL). Estimation based on data collected in situ show that in the warm side (north) of the oceanographic front the fluxes are more intense (latent heat: 62 W/m² and sensible heat: 0.6 W/m²) than in the cold side (south) (latent heat: 5.8 W/m² and sensible heat: -13.8 W/m²). In the South Atlantic Current (SAC) along the 30° S parallel, heat fluxes are directly related to the meandering characteristic of the current. The data collected in situ, in addition to allow heat flux estimates at a better spatial resolution, were used to develop a new method for estimating the heat energy exchanged between the atmosphere and the ocean caused by the presence of mesoscale oceanic structures. This methodology consists in the comparison of a radiosonde profile taken over waters of the structure of interest and another taken over waters which do not belong to this structure. The methodology was used to estimate the heat energy transfer between the atmosphere and the ocean over the top of three structures sampled in the OAS. The estimation of the heat energy transferred by a warm eddy detached from the BC points to an energy in the latent (sensible) form of 1.6 1017 J (-2.8 1016 J) which corresponds to approximately 0.011 % of the total heat energy of the eddy transferred to the atmosphere during the field experiment and 0.78 % transferred during the supposed lifetime of the eddy (3 months). Along the CSA two oceanic structures were studied: (i) a cold meander that receives from the atmosphere energy in the latent (sensible) form of 1.4 106 J/m2 (5.4 105 J/m2), and (ii) warmer waters associated with a detached eddy from the Agulhas Current (AC) that transfer to the atmosphe heat energy of approximately 4 106 J/m2 an 5.7 106 J/m2 in the latent and sensible forms, respectively. The estimation of heat energy transfer on top of mesoscale oceanic structures clearly demonstrate the importance of these structures for the heat exchanges between the ocean and the atmosphere and must be taken into account in future works about this subject in the SAO.
A compreensão das interações entre oceano e atmosfera em regiões de frentes oceanográficas é de vital importância para o melhoramento de modelos numéricos de previsão do tempo e clima. No Oceano Atlântico Sul (OAS) o encontro entre as águas quentes da Corrente do Brasil (CB) com as águas frias da Corrente das Malvinas (CM), na região denominada Confluência Brasil-Malvinas (CBM), resulta em intensa atividade oceânica de mesoescala e, por esse motivo, essa região é considerada uma das mais energéticas do Oceano Global. As interações resultantes do contraste termal ao longo de regiões de frentes oceanográficas no OAS são investigadas neste trabalho através de estimativas de fluxos de calor baseadas em dados de satélite e dados coletados in situ. Os resultados do trabalho demonstram que a resposta aos contrastes termais encontrados no oceano se dá na forma de fluxos de calor e que esses fluxos são fundamentais na modulação da Camada Limite Atmosférica (CLA). As estimativas com base em dados coletados in situ demonstram que no lado quente (norte) da frente oceanográfica os fluxos são mais intensos (calor latente: 62 W/m² e calor sensível: 0,6 W/m²) que nos lado frio (sul) (calor latente: 5,8 W/m² e calor sensível: -13,8 W/m²). Na Corrente Sul Atlântica (CSA), ao longo do paralelo de 30° S, os fluxos de calor estão diretamente relacionados a característica meandrante da corrente. Os dados coletados in situ, além de possibilitarem estimativas de fluxo de calor com uma melhor resolução espacial, foram usados no desenvolvimento de uma nova metodologia para estimativa da energia calorífica trocada entre oceano e atmosfera em virtude da presença de estruturas oceânicas de mesoescala. Essa metodologia consiste na comparação entre um perfil de radiossonda tomado sobre águas da estrutura de interesse e outro tomado sobre águas que não pertencem a essa estrutura. A metodologia desenvolvida foi utilizada para determinar a transferência de energia calorífica entre oceano e atmosfera em três estruturas amostradas no OAS. A estimativa da energia calorífica transferida por um vórtice quente desprendido da CB aponta para uma energia na forma latente (sensível) de 1,6 1017 J (-2,8 1016 J) que corresponde a aproximadamente 0,011 % da energia calorífica total do vórtice transferida durante o experimento de campo e de 0,78 % da energia do vórtice transferidos durante o tempo suposto de vida do vórtice (3 meses). Ao longo da CSA, duas estruturas oceânicas foram estudadas: (i) um meandro frio que recebe da atmosfera uma energia na forma latente (sensível) de 1,4 106 J/m2 (5,4 105 J/m2) e (ii) águas mais quentes associadas a um vórtice desprendido da Corrente das Agulhas (CA) que transferem para a atmosfera uma energia calorífica de aproximadamente 4 106 J/m2 e 5,7 106 J/m2 nas formas latente e sensível, respectivamente. As estimativas da transferência de energia calorífica sobre estruturas oceânicas de mesoescala demonstram claramente a importância destas nas trocas de calor entre o oceano e a atmosfera e devem ser levadas em consideração em trabalhos futuros sobre o tema no OAS.
5

Lytle, William. "Coupled Evaluation of Below- and Above-Ground Energy and Water Cycle Variables from Reanalysis Products Over Five Flux Tower Sites in the U.S." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/595636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reanalysis products are widely used to study the land-atmosphere exchanges of energy, water, and carbon fluxes, and have been evaluated using in situ data above or below ground. Here measurements for several years at five flux tower sites in the U.S. (with a total of 315,576 hours of data) are used for the coupled evaluation of both below- and above-ground processes from three global reanalysis products and six global land data assimilation products. All products show systematic errors in precipitation, snow depth, and the timing of the melting and onset of snow. Despite the biases in soil moisture, all products show significant correlations with observed daily soil moisture for the periods with unfrozen soil. While errors in 2 meter air temperature are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal snow. While net shortwave and longwave radiation flux errors have opposite signs across all products, the net radiation and ground heat flux errors are usually smaller in magnitude than turbulent flux errors. On the other hand, the all-product averages usually agree well with the observations on the evaporative fraction, defined as the ratio of latent heat over the sum of latent and sensible heat fluxes. This study identifies the strengths and weaknesses of these widely-used products, and helps understand the connection of their errors in above- versus below-ground quantities.
6

Fan, Yalin. "Effects of surface waves on air-sea momentum and energy fluxes and ocean response to hurricanes /." View online ; access limited to URI, 2007. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3276981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ayet, Alex. "Flux de quantité de mouvement à l'interface air-mer : approche théorique du couplage entre turbulence et vagues de vent On the Impact of Long Wind-Waves on Near-Surface Turbulence and Momentum Fluxes, in Boundary-Layer Meteorology volume 174, March 2020 Scalewise return to isotropy in stratified boundary layer flows, in JGR Atmospheres 125 (16), August 2020 Scaling laws for the length scale of energy‐containing eddies in a sheared and thermally stratified atmospheric surface layer, in Geophysical Research Letters 47(23), December 2020." Thesis, Brest, 2020. http://www.theses.fr/2020BRES0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Malgré de nombreuses études, le lien de causalité entre vent et vagues fait toujours l’objet de controverses : cela est dû entre autres au caractère multi-échelle d'une surface océanique réaliste, et à la présence de déferlements, qui modifient radicalement sa topologie. Dans cette thèse, ces deux questions sont abordées sous un angle théorique, à travers un modèle phénoménologique, qui relie les propriétés spectrales et moyennées de la turbulence proche de paroi en utilisant la géométrie de tourbillons attachés à celle-ci. La première partie de la thèse revisite ce modèle phénoménologique en questionnant ses hypothèses sous-jacentes et révèle, en particulier, des incohérences dans les modèles utilisés pour décrire le terme de redistribution d'énergie entre composantes turbulentes (modèle de Rotta). Le modèle phénoménologique est ensuite utilisé pour étudier le couplage entre vagues de vent longues (de l'ordre de 10m) et turbulence. Les résultats démontrent que la déformation des tourbillons attachés induite par cette interaction pourrait expliquer une partie de la variabilité des flux de quantité de mouvement à un vent moyen donné. Finalement, le couplage entre la turbulence et les vagues courtes et déferlantes est abordé en définissant une sous-couche rugueuse dans laquelle les propriétés des tourbillons attachés sont définies par la vitesse des fronts déferlants dominants pour un vent donné. Ces deux études posent les bases d'un nouveau paradigme, permettant d'étudier le couplage multi-échelle entre le spectre turbulent et le spectre des vagues. Celui-ci pourrait permettre de mieux prendre en compte l'influence de paramètres environnementaux sur les flux de quantité de mouvement et de chaleur. Il ouvre ainsi de nouvelles perspectives pour les études théoriques et pour l’exploration des données expérimentales
Despite numerous works, the causal link between wind and waves is still a controversial subject. This is due, among others, to the multi-scale nature of a realistic ocean surface and to wave breaking, which changes its topology. In this thesis, such problems are studied from a theoretical perspective, using a phenomenological model linking the spectral and averaged properties of wall-bounded turbulence through the geometry attached eddies.The first part of the thesis revisits this phenomenological model by questioning its underlying assumptions and, in particular, reveals inconsistencies in the models used for the energy redistribution between turbulence components (the Rotta model). The phenomenological model is then used to study the coupling between long wind-waves (of order 10m) and turbulence. Results indicate that the deformation of attached eddies, induced by this interaction, could explain some of the variability in momentum fluxes for a given mean wind. Finally, the study of the coupling between turbulence and short breaking waves is approached by defining a roughness sublayer, in which the properties of the attached eddies depend solely on the speed of the dominant breaking fronts for a given wind. These two studies from the basis of a new paradigm to study the multi-scale coupling between the turbulent and wave spectra. This would allow accounting for the influence of environmental parameters on momentum and heat fluxes, and opens new paths both from a theoretical perspective and for the analysis of experimental data
8

Gavrilovic, Nikola. "Endurance improvement of mini UAVs through energy harvesting from atmospheric gusts." Thesis, Toulouse, ISAE, 2018. http://www.theses.fr/2018ESAE0024/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse a pour but de découvrir la faisabilité et le potentiel de la récupération d'énergie à partir de rafales atmosphériques pour les micro et mini véhicules aériens sans pilote. L'atmosphère sert de grande source d'énergie pouvant être récoltée afin d'accroître la performance des petits UAV sous la forme d'une autonomie et d'une autonomie étendues. Il est bien connu que de nombreuses espèces d'oiseaux utilisent diverses techniques de vol pour obtenir des performances de vol étonnantes. Compte tenu du fait que les véhicules susmentionnés partagent la taille et la vitesse de vol avec des dépliants naturels, cette thèse peut être considérée comme une application des techniques de vol bio-inspirées pour les véhicules construits par l’homme. Cette étude de trois ans visait à établir une dérivation théorique des équations qui décrivent la dynamique de vol d'un aéronef en présence d'un environnement en rafales. La première réalisation a été la démonstration du mécanisme de récupération d'énergie et des paramètres d'influence à travers des simulations décrivant le vol en modèle de masse ponctuelle d'aéronef avec un contrôle optimisé de l'ascenseur en présence d'un profil de vent sinusoïdal et stochastique. La réalisation suivante est liée à un système sensoriel inspiré par la biologie qui utilise des mesures de pression des ailes pour estimer l’angle d’attaque local. Ce système particulier a été utilisé dans l’estimation du champ de vent, en tant que mécanisme décisif et protection contre le décrochage. Enfin, les dernières contributions sont liées à l’expérience et aux résultats obtenus lors d’essais en vol visant à prouver l’augmentation de l’état énergétique de l’avion lors des manœuvres de récupération d’énergie. La première campagne d'essais en vol a été réalisée avec un mini-UAV disponible dans le commerce équipé de sondes à trous multiples et d'un contrôleur conçu sur mesure. Cette campagne a démontré l’augmentation de l’état d’énergie dans un fort gradient de vent horizontal. La deuxième campagne d'essais en vol a été réalisée avec une aile volante équipée d'un système de détection de pression pour l'estimation du champ de vent. Cette campagne a également impliqué des économies supplémentaires sur la consommation d'énergie électrique lors des vols de récupération d'énergie
This thesis aims at discovering the feasibility and potential of energy-harvesting from atmospheric gusts for micro and mini unmanned aerial vehicles. The atmosphere serves as a great source of energy that can be harvested in order to increase performance of small UAVs in form of extended endurance and range. It is well known that many bird species use various flight techniques for achieving astonishing flight performances. Considering the fact that aforementioned vehicles share size and flight speed with natural flyers, this thesis can be considered as an application of bioinspired flight techniques for man made vehicles. This three-year study set out to establish a theoretical derivation of equations that describe flight dynamics of an aircraft in presence of gusty environment. The first achievement was demonstration of energy harvesting mechanism and influencing parameters through simulations that describe aircraft point mass model flight with optimized control of elevator in presence of sinusoidal and stochastic wind profile. The next achievement is related to a biologically inspired sensory system that uses wing pressure measurements for local angle of attack estimation. That particular system found purpose in wind field estimation, as decisive mechanism and stall protection. Finally, last contributions are related to experience and results gained from flight tests which aimed to prove increase in energy state of the aircraft while performing energy harvesting maneuvers. The first flight test campaign was performed with commercially available mini UAV equipped with multi-hole probes and custom designed controller. This campaign demonstrated the raise in energy state within strong horizontal wind gradient. The second flight test campaign was done with a flying wing equipped with pressure sensing system for wind field estimation. This campaign also involved additional insight savings in electrical power consumption during energy harvesting flights
9

Vogel, Christoph Alexander. "An investigation of the role of flux divergence in the turbulent kinetic energy balance of the atmospheric surface layer." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/25789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ma, Ning, Guo-Yue Niu, Youlong Xia, Xitian Cai, Yinsheng Zhang, Yaoming Ma, and Yuanhao Fang. "A Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States." AMER GEOPHYSICAL UNION, 2017. http://hdl.handle.net/10150/626444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Accurate simulation of energy, water, and carbon fluxes exchanging between the land surface and the atmosphere is beneficial for improving terrestrial ecohydrological and climate predictions. We systematically assessed the Noah land surface model (LSM) with mutiparameterization options (Noah-MP) in simulating these fluxes and associated variations in terrestrial water storage (TWS) and snow cover fraction (SCF) against various reference products over 18 United States Geological Survey two-digital hydrological unit code regions of the continental United States (CONUS). In general, Noah-MP captures better the observed seasonal and interregional variability of net radiation, SCF, and runoff than other variables. With a dynamic vegetation model, it overestimates gross primary productivity by 40% and evapotranspiration (ET) by 22% over the whole CONUS domain; however, with a prescribed climatology of leaf area index, it greatly improves ET simulation with relative bias dropping to 4%. It accurately simulates regional TWS dynamics in most regions except those with large lakes or severely affected by irrigation and/or impoundments. Incorporating the lake water storage variations into the modeled TWS variations largely reduces the TWS simulation bias more obviously over the Great Lakes with model efficiency increasing from 0.18 to 0.76. Noah-MP simulates runoff well in most regions except an obvious overestimation (underestimation) in the Rio Grande and Lower Colorado (New England). Compared with North American Land Data Assimilation System Phase 2 (NLDAS-2) LSMs, Noah-MP shows a better ability to simulate runoff and a comparable skill in simulating R-n but a worse skill in simulating ET over most regions. This study suggests that future model developments should focus on improving the representations of vegetation dynamics, lake water storage dynamics, and human activities including irrigation and impoundments.

Книги з теми "Atmospheric Energy Fluxes":

1

Burkhardt, Thomas. Subgrid-scale vertical energy fluxes over the African-Atlantic region. Bonn: Dümmler, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Siegrist, Franziska C. Determination of energy and trace gas fluxes on a regional scale: Combination of local surface flux measurements and vertical flux profiles throughout the atmospheric boundary layer in complex terrain (Swiss Seeland Region). Bern: Institute of Geographiy, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International Conference Soils and the Greenhouse Effect (1989 Wageningen, Netherlands). Soils and the greenhouse effect: The present status and future trends concerning the effect of soils and their cover on the fluxes of greenhouse gases, the surface energy balance, and the water balance : proceedings of the International Conference Soils and the Greenhouse Effect. Chichester: Wiley, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

J, Dobosy Ronald, Birdwell Kevin R, and Air Resources Laboratory (U.S.), eds. Airborne measurements of mass, momentum, and energy fluxes for the Boardman-Arm Regional Flux Experiment--1991 preliminary data release. Silver Spring, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jet Propulsion Laboratory (U.S.) and Nova University, eds. Air-sea interaction with SSM/I and altimeter: Report of the NASA Ocean Energy Fluxes Science Working Group. Pasadena, Calif: Jet Propulsion Laboratory, California Institute of Technology, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jet Propulsion Laboratory (U.S.) and Nova University, eds. Air-sea interaction with SSM/I and altimeter: Report of the NASA Ocean Energy Fluxes Science Working Group. Pasadena, Calif: Jet Propulsion Laboratory, California Institute of Technology, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sivaramakrishnan, S., of Indian Institute of Tropical Meteorology. and Indian Institute of Tropical Meteorology., eds. Measurement of profiles and surface energy fluxes on the west coast of India at Vasco-Da-Gama, Goa during ARMEX 2002-03. Pune: Indian Institute of Tropical Meteorology, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cook, Peter J. Clean Energy, Climate and Carbon. CSIRO Publishing, 2012. http://dx.doi.org/10.1071/9780643106826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the general reader in mind, Clean Energy, Climate and Carbon outlines the global challenge of decreasing greenhouse gas emissions. It covers the changing concentration of atmospheric carbon dioxide through time and its causes, before considering the promise and the limitations of a wide range of energy technologies for decreasing carbon dioxide emissions. Despite the need to decrease carbon dioxide, the fact is that the global use of fossil fuels is increasing and is likely to continue to do so for some decades to come. With this in mind, the book considers in detail, what for many people is the unfamiliar clean energy technology of carbon capture and storage (CCS). How can we capture carbon dioxide from flue gases? How do we transport it? How do we store it in suitable rocks? What are suitable rocks and where do we find them? How do we know the carbon dioxide will remain trapped once it is injected underground? What does CCS cost and how do those costs compare with other technology options? The book also explores the political environment in which the discussion on clean energy technology options is occurring. What will a price on carbon do for technology uptake and what are the prospects of cutting our emissions by 2020 and of making even deeper cuts by 2050? What will the technology mix look like by that time? For people who are concerned about climate change, or who want to learn more about clean energy technologies, including CCS, this is the definitive view of the opportunities and the challenges we face in decreasing emissions despite a seemingly inexorable global increase in energy demand.
9

United States. National Aeronautics and Space Administration., ed. Global ultraviolet imager (GUVI) investigation: Period of performance, 08 Nov 1993 through 07 Dec 1994 : GUVI final report. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration., ed. Global Ultraviolet Imager (GUVI) Investigation: Period of performance, 08 Nov 1993 through 07 Dec 1994 : GUVI final report : final report : NASA contract no. NAS5-32572. [Washington, DC: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Atmospheric Energy Fluxes":

1

Honda, Morihiro. "Calculation of Low-Energy Atmospheric Neutrino Fluxes." In Physics and Astrophysics of Neutrinos, 606–24. Tokyo: Springer Japan, 1994. http://dx.doi.org/10.1007/978-4-431-67029-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hatfield, Jerry L., and John H. Prueger. "Variable Atmospheric, Canopy, and Soil Effects on Energy and Carbon Fluxes over Crops." In Improving Modeling Tools to Assess Climate Change Effects on Crop Response, 195–216. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2016. http://dx.doi.org/10.2134/advagricsystmodel7.2014.0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oswald, Claire J., Wayne R. Rouse, and Jacqueline Binyamin. "Modeling Lake Energy Fluxes in the Mackenzie River Basin using Bulk Aerodynamic Mass Transfer Theory." In Cold Region Atmospheric and Hydrologic Studies. The Mackenzie GEWEX Experience, 161–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75136-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vanzandt, Thomas E., and David C. Fritts. "Spectral Estimates of Gravity Wave Energy and Momentum Fluxes." In Coupling Processes in the Lower and Middle Atmosphere, 261–90. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1594-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dolman, A. J., E. J. Moors, T. Grunwald, P. Berbigier, and C. Bernhofer. "Factors Controlling Forest Atmosphere Exchange of Water, Energy, and Carbon." In Fluxes of Carbon, Water and Energy of European Forests, 207–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05171-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barker, H. W., S. Kato, and T. Wehr. "Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data." In Observing and Modelling Earth's Energy Flows, 325–44. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-4327-4_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tuck, Adrian F. "Non-Equilibrium Statistical Mechanics." In Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Earth’s atmosphere is far from equilibrium; it is constantly in motion from the combined effects of gravity and planetary rotation, is constantly absorbing and emitting radiation, and hosts ongoing chemical reactions which are ultimately fuelled by solar photons. It has fluxes of material and energy across its boundaries with the planetary surface, both terrestrial and marine, and also emits a continual outward flux of infrared photons to space. The gaseous atmosphere is manifestly a kinetic system, meaning that its evolution must be described by time dependent differential equations. The equations doing this under the continuum fluid approximation are the Navier–Stokes equations, which are not analytically solvable and which support many non-linear instabilities. We have also seen that the generation of turbulence is a fundamentally difficult yet central feature of air motion, originating on the molecular scale. Non-equilibrium statistical mechanics may offer insight into which steady states a system far from equilibrium as a result of fluxes and anisotropies may migrate, without the need for detailed solution of the explicit path between the states. However, it does not seem possible to demonstrate mathematically that such steady states exist for the atmosphere. A physical view of the planet’s past and probable future suggests that the past and future evolution of the sun and its outgoing fluxes of energy may mean that the air-water-earth system may never have been or will ever be in a rigorously defined steady state. Also, to the human population, the detailed, time-dependent evolution is what matters in many respects. Nevertheless, non-equilibrium statistical mechanics is a discipline which should be applicable in principle to yield information about approximate steady states. These steady states may as a practical matter be definable from the observational record, for example the ice ages and the intervening periods evident in the geological record, or between states with two differing global average abundances of a radiatively active gas such as carbon dioxide. There has been great progress recently in non-equilibrium statistical mechanics, stemming from recent work on the concept of the maximization of entropy production.
8

Kaimal, J. C., and J. J. Finnigan. "Sensors and Techniques for Observing the Boundary Layer." In Atmospheric Boundary Layer Flows. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195062397.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sensors used for boundary layer measurements fall into two broad categories: in situ sensors that can be mounted on the ground, on masts, towers, tethered balloons, free balloons, or aircraft; and remote sensors, ground-based or aircraft-mounted, that infer atmospheric properties through their effects on acoustic, microwave, and optical signals propagating through the air. In situ sensors are the traditional instruments of choice for surface and lower boundary layer studies, being the only ones capable of the accuracy and resolution needed for quantitative work. A major portion of this chapter will therefore be devoted to discussions of their characteristics. Remote sensors have the advantage of increased range and spatial scanning capability, but the constraints on minimum range and spatial resolution limit their usefulness for surface layer measurements. Used in combination, however, the two types of sensors provide a more complete description of the flow field being studied than either of the two can provide separately. New remote sensors with shorter minimum ranges and finer range resolutions are now becoming available for boundary layer applications. A brief discussion of such devices is also included in this chapter. The variables of greatest interest to boundary layer meteorologists are wind speed, temperature, humidity, and the fluxes of momentum, heat, mass, and radiant energy. Given suitable fast-response measurements of wind velocity and scalar fluctuations, we can calculate the eddy fluxes directly from the products of their fluctuating components as explained in Chapter 1. If only the gradients of their means are available, however, then over a flat homogeneous surface the fluxes may be inferred from the Monin-Obukhov relationships of Chapters 1 and 3. Practical methods for doing that are described in many texts; see, for example, Monteith (1975, 1976). (Those simple relationships do not hold, as we know, under advective conditions, in plant canopies, and over hills.) There are also sensors in use that measure surface and near-surface fluxes directly, such as the drag plate (surface stress), the lysimeter (latent heat flux), flux plates (soil heat flux), and radiometers (radiant heat flux). We will discuss these and a few other types as well because of their application to studies of plant canopies.
9

Kraus, Eric B., and Joost A. Businger. "Large-Scale Forcing by Sea Surface Buoyancy Fluxes." In Atmosphere-Ocean Interaction. Oxford University Press, 1995. http://dx.doi.org/10.1093/oso/9780195066180.003.0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter deals with convective fluxes of sensible heat, moisture, and salinity that originate at the sea surface. In Section 8.1 we consider the relative influence of oceanic and atmospheric variability upon these fluxes. The general character of deep convection and its occurrence in the polar oceans is discussed in Section 8.2. The case of deep convection over the ocean in the tropical atmosphere, which is somewhat more complicated because of compressibility and cloud formation, is discussed in Section 8.3. Finally, in Section 8.4, we consider some of the long-term ocean-atmosphere feedback processes. Kinetic energy in the atmosphere-ocean system is derived mainly from an upward flux of buoyancy. The resulting redistribution of mass reduces available potential energy APE and lowers the centre of gravity. In turn, APE is generated, primarily by non-adiabatic processes: unequal absorption and emission of radiation; local release of latent heat in the atmosphere; local salinity changes in the ocean; and unequal heat conduction from the boundaries. The total mass of the oceans is about 280 times that of the atmosphere; their heat capacity is nearly 1200 times larger. Oceanic response times to external forcing are correspondingly slower. Although the annual irradiation cycle affects only a small part of the water mass, the thermal inertia is strong enough to prevent large or fast temperature variations. It is well known that this has a dominant influence on the whole terrestrial climate. This influence is particularly strong in the marine temperate regions. Figure 5.10 showed that even the daily temperature changes of the surface waters are smaller than those in the air. By virtue of their mechanical and thermal inertia, the oceans tend to play the role of a flywheel in the air-sea system. The atmosphere is the more volatile and more variable partner. It supplies mechanical energy to the oceans at a rate that has a very skewed distribution in space and time because the work of the wind stress is proportional to the third power of the windspeed. This creates a strong bias in favour of restricted stormy areas.
10

Goody, R. M., and Y. L. Yung. "Extinction by Molecules and Droplets." In Atmospheric Radiation. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195051346.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The formal theory developed in Chapter 2 assumed the Stokes parameters to be additive. The sufficient condition for additivity is that the radiation fluxes in the atmosphere shall have no phase coherence. Thermal emission from independently excited molecules is necessarily incoherent with respect to phase. Atmospheric scattering centers are widely and randomly spaced, and they can be treated as independent and incoherent scatterers. The situation differs, however, when we consider details of the scattering process within a single particle, and in order to derive the extinction coefficient and the scattering matrix (see § 2.1.3) we must make use of a theoretical framework that involves the phase explicitly. The problem of the interaction between an electromagnetic wave and a dielectric particle can be precisely formulated using Maxwell’s equations. For a plane wave and a spherical particle, Mie’s theory provides a complete solution (see §7.6). But the general problem is complicated and our understanding is rendered more difficult by preconceptions based on the approximations of elementary optics. This chapter provides a brief survey of the important results and the underlying concepts. The geometry of the problem is illustrated in Fig. 7.1. An isolated particle is irradiated by an incident, plane electromagnetic wave. The plane wave preserves its character only if it propagates through a homogeneous medium; the presence of the scattering particle, with electric and magnetic properties differing from those of the surrounding medium, distorts the wave front. The disturbance has two aspects: first, the plane wave is diminished in amplitude; second, at distances from the particle that are large compared with the wavelength and particle size, there is an additional, outward-traveling spherical wave. The energy carried by this spherical wave is the scattered energy; the total energy lost by the plane wave corresponds to extinction; the difference is the absorption. The properties of the spherical wave in one particular direction (the line of sight) will be considered. This direction can be specified by the scattering angle 6 (see Fig. 7.1) in a plane containing both the incident and scattered wave normals (the plane of reference), and the azimuth angle ϕ) between the plane of reference and a plane fixed in space.

Тези доповідей конференцій з теми "Atmospheric Energy Fluxes":

1

Gaisser, T. K., and Todor Stanev. "Atmospheric neutrino fluxes at low energy." In AIP Conference Proceedings Vol.126. AIP, 1985. http://dx.doi.org/10.1063/1.35157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stevens, Blake, and Magdi Ragheb. "Atmospheric heat fluxes and restoration of the circumglobal equatorial current." In Renewable Energy Conference (INREC). IEEE, 2010. http://dx.doi.org/10.1109/inrec.2010.5462597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kokorina, Aleksandra, and Alexander Pak. "Hard Metal Waste Recycling by the Atmospheric Direct Current Arc Plasma." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tarasenko, Victor, Vladimir Kuznetsov, Viktor Skakun, Evgeniy Baksht, Viktor Panarin, and Edward Sosnin. "Ignition Different Mode of Corona Discharge in Air at Atmospheric Pressure." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zubarev, Nikolay, Konstantin Sharypov, Sergey Shunailov, Anna Sadykova, Valery Shpak, and Michael Yalandin. "Formation of the Secondary Runaway Electron Flow in an Elongated Atmospheric Gap." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kozlov, Boris, Dmitry Makhan'ko, and Mai The Nguyen. "Volume Discharges in CO2-Laser Mixtures at Atmospheric Pressures With High Energy Density." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9242065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evtina, Anastasia A., Michael A. Buldakov, V. O. Nekhoroshev, N. V. Landl, Y. D. Korolev, and N. V. Cherdyntseva. "Effect of Atmospheric-pressure Plasma Jet on Normal and Tumor Cells in vitro." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuznetsov, Vladimir, Victor Tarasenko, Alexander Kokovin, and Andrey Kozyrev. "Atmospheric Pressure Corona Discharge in the Needle-Plane Electrode System: Influence of Field Peaking on Electrophysical Parameters." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kurbanismailov, Vali, Omar Omarov, Zaira Khalikova, Sergey Maiorov, Gadzhimirza Ragimkhanov, and Abutrab Aliverdiev. "Research of the Radiation Spectra of Material of Material of Electrodes in a Pulsed Discharge in Helium of Atmospheric Pressure." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kozlov, Boris, Dmitry Makhan'ko, and Vladislav Seredinov. "A New Design of High-Voltage Pulse Generators for Ignition of Volume Discharges at Super-Atmospheric Pressures in a Pulse-Periodical Regime." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії