Добірка наукової літератури з теми "AZ91D"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "AZ91D".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "AZ91D"
Melnikov, Evgenii S., Maria A. Surmeneva, Alexander I. Tyurin, Tatyana S. Pirozhkova, Ivan A. Shuvarin, Oleg Prymak, Matthias Epple, and Roman A. Surmenev. "Improvement of the Mechanical Properties of AZ91D Magnesium Alloys by Deposition of Thin Hydroxyapatite Film." Nano Hybrids and Composites 13 (January 2017): 355–61. http://dx.doi.org/10.4028/www.scientific.net/nhc.13.355.
Повний текст джерелаShkurankov, Andrey, Sherif Zein El Abedin, and Frank Endres. "AFM-Assisted Investigation of the Corrosion Behaviour of Magnesium and AZ91 Alloys in an Ionic Liquid with Varying Water Content." Australian Journal of Chemistry 60, no. 1 (2007): 35. http://dx.doi.org/10.1071/ch06305.
Повний текст джерелаMing, Yuan, Yu Sirong, Liu Enyang, Li Fanguo, Zhao Yan, Zhang Shanbao, and Li Jingda. "High-temperature damping capacity of fly ash cenosphere/AZ91D Mg alloy composites." Science and Engineering of Composite Materials 25, no. 1 (January 26, 2018): 197–204. http://dx.doi.org/10.1515/secm-2016-0094.
Повний текст джерелаJia, Suqiu, Shu Sheng Jia, Guangping Sun, and Jun Yao. "The Corrosion Behaviour of Mg Alloy AZ91D/TiCp Metal Matrix Composite." Materials Science Forum 488-489 (July 2005): 705–8. http://dx.doi.org/10.4028/www.scientific.net/msf.488-489.705.
Повний текст джерелаHu, Xiao Shi, Kun Wu, Ming Yi Zheng, Shi Wei Xu, and Y. K. Zhang. "Effect of Deformation on the Damping Capacity of Magnesium Alloys." Materials Science Forum 488-489 (July 2005): 737–40. http://dx.doi.org/10.4028/www.scientific.net/msf.488-489.737.
Повний текст джерелаZHANG, X. P., Y. S. ZOU, F. M. WU, Z. P. ZHAO, L. YOU, C. F. GU, and Y. Z. LIAO. "WEAR RESISTANCE OF AZ91D MAGNESIUM ALLOY WITH AND WITHOUT MICROARC OXIDATION COATING AND Ti6Al4V ALLOY IN ARTIFICIAL SALIVA." Surface Review and Letters 16, no. 06 (December 2009): 821–30. http://dx.doi.org/10.1142/s0218625x09013372.
Повний текст джерелаCheng, Jun, Jian-hua Zhao, Jin-yong Zhang, Yu Guo, Ke He, Jing-Jing Shang-guan, and Fu-lin Wen. "Microstructure and Mechanical Properties of Galvanized-45 Steel/AZ91D Bimetallic Material by Liquid-Solid Compound Casting." Materials 12, no. 10 (May 21, 2019): 1651. http://dx.doi.org/10.3390/ma12101651.
Повний текст джерелаFahad, Mohammed, and Bavanish B. "Tribological behavior of AZ91D magnesium alloy composite: effect of hybrid WC – SiO2 nanoparticles." Industrial Lubrication and Tribology 73, no. 5 (July 14, 2021): 789–95. http://dx.doi.org/10.1108/ilt-02-2021-0038.
Повний текст джерелаLin, Bi Lan, Yu Ye Xu, and En Cai Li. "Effect of Phosphating Additives on Corrosion Resistance of Phosphate Coatings on AZ91D Magnesium Alloy." Advanced Materials Research 337 (September 2011): 112–15. http://dx.doi.org/10.4028/www.scientific.net/amr.337.112.
Повний текст джерелаWang, Yingying, Bernard Normand, Xinkun Suo, Marie-Pierre Planche, Hanlin Liao, and Junlei Tang. "Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings." Coatings 8, no. 4 (March 26, 2018): 122. http://dx.doi.org/10.3390/coatings8040122.
Повний текст джерелаДисертації з теми "AZ91D"
Fernández, Gustavo Jorge. "Proceso de extrusión de la aleación de Magnesio AZ91D." Bachelor's thesis, Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Escuela de Ingeniería Aeronáutica, 2016. http://hdl.handle.net/11086/5577.
Повний текст джерелаAnaliza la posibilidad de deformación plástica de la Aleación de Magnesio AZ91D, obtenida a partir de un proceso de re fusión de virutas de mecanizado. Los ensayos consisten en someter este material a un proceso de extrusión en caliente, para lo cual se realiza un estudio completo del material, del proceso de extrusión, se diseña un dispositivo para extruir y se desarrolla una metodología de trabajo. Los resultados muestran que el material se deforma plásticamente bajo la acción de cargas de compresión a alta temperatura.
Milne, Rodrigo. "Recuperación pulvimetalúrgica de aleación de magnesio AZ91D con fines estructurales." Bachelor's thesis, Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Escuela de Ingeniería Aeronáutica, 2015. http://hdl.handle.net/11086/2201.
Повний текст джерелаDesarrolla un método que permite la recuperación de la viruta de aleación de magnesio AZ91D, producto del mecanizado de carcasas de cajas de velocidades, mediante técnicas de pulvimetalurgia con la finalidad de poder aplicarse en componentes estructurales aeroespaciales. Se propone estudiar el efecto que poseen las variables más importantes del proceso sobre las propiedades mecánicas de la pieza final.
Dini, Hoda. "As-cast AZ91D Magnesium Alloy Properties- Effect of Microstructure and Temperature." Licentiate thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH. Forskningsmiljö Material och tillverkning – Gjutning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-28467.
Повний текст джерелаLiu, Guojun. "A study on twin-screw rheo-diecasting of AZ91D Mg-alloy." Thesis, Brunel University, 2006. http://bura.brunel.ac.uk/handle/2438/5227.
Повний текст джерелаDini, Hoda. "As-cast AZ91D magnesium alloy properties : Effects of microstructure and temperature." Doctoral thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Material och tillverkning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-38148.
Повний текст джерелаNumera finns det ett väsentligt behov av lätta, energieffektiva och miljövänliga tekniksystem. Detta behov är drivkraften för utveckling av ett brett utbud av material för energigenerering, energilagring, framdrivning och transport. Dessa utmaningar motiverade användningen av magnesiumlegeringar för lättviktskonstruktioner. Magnesium har en densitet på 1,74 g/cm3, vilket är ca 30% lägre än för aluminium, en fjärdedel av densiteten för stål och nästan i nivå med många polymerer. Då magnesiumlegeringar dessutom är lätta att återvinna, jämfört med polymerer, gör det dem miljömässigt attraktiva. Låga mekaniska egenskaper är den främsta orsaken till begränsad användning av dessa legeringar för lastbärande tillämpningar. Mg-Al-Zn-legeringen AZ91D uppvisar en utmärkt kombination av styrka, gjutbarhet och korrosionsbeständighet. Dess mekaniska egenskaper vid förhöjd temperatur, som tex kryphållfasthet, är låga. Dessutom är korrelationen mellan mikrostruktur och mekaniska egenskaper oklar. Denna avhandling syftade till att ge ny kunskap om mikrostrukturens roll för magnesiumlegeringars mekaniska egenskaper. Slutligen var materialets egenskaper i förhållande till processparametrar vid tillverkningen av stort intresse. En omfattande karaktärisering av kornstorleks-, sekundära dendritarmavstånds (SDAS)-fördelning och fraktion av Mg17Al12 utfördes med hjälp av optisk mikroskopering och diffraktion av bakåtspridda elektroner (EBSD). Mikrostrukturen korrelerades till sträckgränsen (Rp0.2), brottstyrkan och brottförlängningen. Det föreslogs att den intermetalliska fasen, Mg17Al12, spelar en viktig roll vid bestämning av legeringens mekaniska och fysikaliska egenskaper vid temperaturintervall från rumstemperatur upp till 190°C genom att bilda ett styvt nätverk av intermetaller. Uppkomsten av ett sådant nätverk stöddes genom en studie av den termiska expansionen av legeringen för olika fraktioner av Mg17Al12. En fysikalisk konstitutiv modell med ett brett giltighetsområde användes framgångsrikt för att beskriva det plastiska flytbeteendet hos AZ91D för olika mikrostrukturer. De temperaturberoende variablerna i modellen korrelerade ganska väl med materialets underliggande fysik. Modellen validerades genom att jämföra dislokationstätheten som predikterades av modellen och den med EBSD uppmätta dislokationstätheten. Påverkan av pressgjutningsparametrar på geometrisk tolerans och restspänning hos de gjutna komponenterna studerades. Vidare studerades geometrisk tolerans och restspänning av komponenter efter pening och målning. Intressant nog hade eftermatningsfasen en stor effekt på geometrisk tolerans och restspänningar. Dessutom hade temperaturen på den fasta formhalvan av verktyget även ett visst inflytande på komponentens geometriska tolerans och restspänning.
Cavallo, María Sara, and Mariana Lucía Flores. "Recubrimientos biodegradables para AZ91D, evaluación del desempeño en fluido fisiológico simulado." Bachelor's thesis, Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, 2017. http://hdl.handle.net/11086/6491.
Повний текст джерелаRealiza la aplicación de técnicas para generar recubrimientos sobre muestras de aleación de magnesio AZ)!D con la finalidad de evaluar el carácter protector frente a la corrosión en un medio fisiológico simulado. Enmarcado en el uso del magnesio y sus aleaciones como metales para implantes biodegradables
戴有志 та Yo-Zhi Dai. "鎂基複合材料AZ91D/SiCp之磨耗研究". 碩士, 國立中正大學, 1995. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22095CCU05311078%22.&searchmode=basic.
Повний текст джерелаParadis, Mathieu. "Évaluation et identification des inclusions dans les alliages de magnésium AM50A et AZ91D." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 2003. http://theses.uqac.ca.
Повний текст джерелаRibeiro, Eloana Patrícia. "Desenvolvimento de revestimentos de conversão à base de cério em liga de magnésio AZ91D." reponame:Repositório Institucional da UFABC, 2017.
Знайти повний текст джерелаDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2017.
Neste estudo foram avaliadas três técnicas de dispersão para o processamento de nanocompósitos de matriz de epóxi com nanopartículas de diferentes geometrias: lamelares, fibrilares e esféricas. Para isso, foram preparados nanocompósitos com montmorilonita, laponita, nanotubos de haloisita, nanotubos de carbono e nanossílica por meio de mistura mecânica, sonicação e moagem de alta energia. A dispersão das nanopartículas na matriz foi avaliada por microscopia eletrônica de varredura, difração de raios X e espalhamento de raios x a baixo ângulo. Os resultados mostraram que o processo de sonicação foi o melhor para dispersar as nanopartículas em epóxi, sendo, portanto, utilizado para a fabricação de nanocompósitos híbridos com matriz de epóxi. Esses materiais apresentam duas fases sólidas nanométricas dispersas na matriz e, neste estudo, foram combinadas nanopartículas de diferentes geometrias, a fim de avaliar as propriedades mecânicas e reológicas dos híbridos e compará-las com as dos nanocompósitos com apenas uma nanopartícula (nanocompósitos convencionais). As propriedades mecânicas foram medidas por meio de ensaios de resistência à flexão, de resistência ao impacto (Izod) e análise dinâmico-mecânica. As propriedades reológicas foram medidas por meio de ensaios de cisalhamento oscilatório de pequenas amplitudes das dispersões não curadas. Com exceção da ductilidade, os nanocompósitos convencionais exibiram propriedades inferiores às da matriz. Já os nanocompósitos híbridos apresentaram propriedades mecânicas superiores às dos nanocompósitos convencionais, e em alguns casos, superiores às da matriz, indicando algum nível de efeito sinergético entre as nanopartículas. As propriedades reológicas das dispersões não curadas indicaram que algumas partículas apresentaram boa dispersão na matriz, antes do processo de cura. Contudo, tal característica não foi convertida em ganhos reais de propriedades mecânicas e os nanocompósitos correspondentes exibiram propriedades muito similares às das amostras supostamente mal dispersas. Esse foi um indicativo de que as propriedades finais dos nanocompósitos foram essencialmente determinadas pelos parâmetros envolvidos no processo de cura do material.
In this study, three dispersion techniques were evaluated for the processing of nanocomposites with epoxy matrix and nanoparticles with different geometries: lamellar, fibrillar and spherical. Therefore, nanocomposites with montmorillonite, laponite, halloysite nanotubes, carbon nanotubes and nanosilica were prepared via magnetic stirring, sonication and high energy milling. The dispersion of the nanoparticles in the epoxy matrix was evaluated using scanning electron microscopy, X-ray diffraction and small angle X-ray scattering. The results showed that sonication was the best method to disperse the nanoparticles in epoxy. Thus, it was used to manufacture hybrid nanocomposites with epoxy matrix. These materials have two different nanometric solid phases, dispersed in the matrix and, in this study, nanoparticles of different geometries were combined, aiming to evaluate the mechanical and rheological properties of the hybrids and compare them to those of the nanocomposites which have only one nanoparticle (conventional nanocomposites). The mechanical properties of the nanocomposites were evaluated through flexural testing, impact strength (Izod) and dynamic-mechanical analysis. The rheological properties were measured by small amplitude oscillatory shear tests of the uncured dispersions. Apart from ductility, the conventional nanocomposites showed inferior properties to those of the matrix. However, the hybrid nanocomposites exhibited superior properties to those of conventional nanocomposites and in some cases, even superior to those of the matrix, suggesting some level of synergistic effects between the nanoparticles. The rheological properties of the uncured dispersions indicated that some particles had good dispersion in the matrix, prior to the curing process. However, such feature was not converted into real gains on mechanical properties and the corresponding nanocomposites exhibited very similar properties to the supposedly poorly dispersed samples. This was an indicative that the final properties of nanocomposites were essentially determined by the parameters involved in the material curing process.
Fritzsch, Katja. "Beitrag zur Verbesserung des Korrosions- und Verschleißverhaltens der Magnesiumlegierung AZ91D mittels lokaler Elektronenstrahl-Flüssigphasen-Randschichtbehandlung." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2018. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-232556.
Повний текст джерелаКниги з теми "AZ91D"
Effect of Surface Modification of Magnesium Alloy AZ91D by Friction Stir Processing. Karur, India: ASDF International, 2017.
Знайти повний текст джерелаЧастини книг з теми "AZ91D"
Walukas, D. M., R. F. Decker, and A. W. Totten. "Effects of Beryllium Content in Thixomoldingr̀ AZ91D." In Magnesium Technology 2001, 95–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118805497.ch18.
Повний текст джерелаZhang, Jin, Yan Ling Tao, and Zhi Fu Sun. "Microstructure of AZ91D in Different Treatment Conditions." In Materials Science Forum, 143–46. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.143.
Повний текст джерелаLiu, Z. Y., Qing Yan Xu, and Bai Cheng Liu. "Microstructure Simulation of Die Casting AZ91D Alloy." In Materials Science Forum, 109–12. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.109.
Повний текст джерелаZhang, Y. K., Xiao Shi Hu, Kun Wu, and Ming Yi Zheng. "Application of G-L Dislocation Model in Low Frequency Damping Capacities of AZ91D and SiCw/AZ91D Composites." In Materials Science Forum, 495–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.495.
Повний текст джерелаJoshi, Utsavi, and Nadendla Hari Babu. "Effect of Al Addition on Microstructure of AZ91D." In Magnesium Technology 2014, 209–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888179.ch41.
Повний текст джерелаJoshi, Utsavi, and Nadendla Hari Babu. "Effect of Al Addition on Microstructure of AZ91D." In Magnesium Technology 2014, 209–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48231-6_41.
Повний текст джерелаZhao, Hao Feng, Ling Wang, Sheng Li Guo, and Jun Yi Su. "On the Infiltration of Fiber Reinforced AZ91D Alloy." In Materials Science Forum, 437–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.437.
Повний текст джерелаBai, Li Qun, Di Li, Min Guo, and Jing Xin. "Rare Earth Conversion Coating of Magnesium Alloy AZ91D." In Materials Science Forum, 555–58. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.555.
Повний текст джерелаŰnal, Ogün, and Murat Tiryakioǧlu. "Characterization of Tensile Deformation in AZ91D Mg Alloy Castings." In Shape Casting: 6th International Symposium, 117–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48166-1_15.
Повний текст джерелаŰNal, Ogün, and Murat Tiryakioğlu. "Characterization of Tensile Deformation in AZ91D Mg alloy castings." In Shape Casting: 6th International Symposium, 117–24. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274865.ch15.
Повний текст джерелаТези доповідей конференцій з теми "AZ91D"
Pinfold, Peter M. D., and Dåg Oymo. "An Evaluation of Refined, Recycled AZ91D Alloy." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930420.
Повний текст джерелаSuman, Chris. "Creep of Diecast Magnesium Alloys AZ91D and AM60B." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910416.
Повний текст джерелаLan, Jie, and Xiaochun Li. "Magnesium Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Magnesium Alloy." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61408.
Повний текст джерелаMurray, Morris T., Winston P. Sequeira, and Robert D'Allesandro. "Properties and Design of Castings in Magnesium Alloy AZ91D." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960420.
Повний текст джерелаZhihong, Guo, Hou Hua, Zhao Yuhong, and Qu Shuwei. "Numerical Simulation of Squeeze Casting of AZ91D Magnesium Alloy." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.239.
Повний текст джерелаDasgupta, Rathindra, Phil Burton, and Zach Brown. "Microstructure and Mechanical Properties of Squeeze Cast AZ91D Magnesium Alloy." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0330.
Повний текст джерелаJacques, Richard P., Rathindra DasGupta, and Andrew G. Haerle. "Evaluation of Recycled AZ91D Magnesium Alloy for Steering Column Components." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970332.
Повний текст джерелаShehata, M. T., V. Kao, E. Essadiqi, C. A. Loong, and C.-Q. Zheng. "Production and Die Casting of Semi-Solid Magnesium Alloy AZ91D." In SAE 2002 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-0082.
Повний текст джерелаMao, H., J. Brevick, C. Mobley, V. Chandrasekar, D. Rodrigo, M. Murray, and R. Esdaile. "Microstructural Characteristics of Die Cast AZ91D and AM60 Magnesium Alloys." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-0928.
Повний текст джерелаFan, Ding, Jianbin Zhang, Yufeng Zheng, and Qiang Li. "Laser cladding of AZ91D magnesium alloy with Ni-Si-Mg." In PICALO 2008: 3rd Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2008. http://dx.doi.org/10.2351/1.5057161.
Повний текст джерела