Добірка наукової літератури з теми "Batterie Lithium Métal"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Batterie Lithium Métal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Batterie Lithium Métal":

1

BOUCHET, Renaud, and Trang N. T. PHAN. "Électrolytes polymères pour les batteries au lithium métal." Innovations technologiques, February 2015. http://dx.doi.org/10.51257/a-v1-re234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Batterie Lithium Métal":

1

Lassagne, Adrien. "Synthèse et caractérisation de nouveaux électrolytes copolymères pour batteries lithium métal polymère." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces travaux ont pour objet la synthèse et la caractérisation de nouveaux électrolytes polymères pour batterie lithium métal polymère (LMP). L’objectif principal de ces électrolytes est de combiner une conductivité ionique élevée jusqu’à basse température et une résistance efficace contre les dendrites de lithium. Pour y parvenir, trois catégories de copolymères à bloc ont été élaborés, ils permettent d’obtenir une synergie de propriétés à priori antagonistes au sein d’un même matériau. Premièrement, la rigidité du polystyrène (PS) a été combinée à la conductivité du polyoxyéthylène (POE) dopé avec un sel de lithium (LiTFSI). Le POE a été préalablement modifié pour en abaisser la température de fusion (Tf) initialement située à 60°C, ce qui permet d’atteindre de hautes conductivités (7.10-5 S.cm-1) à 40°C, associées à un module d’Young de 0,3 MPa. Cependant, les bonnes conductivités de ces matériaux ne sont assurées que par une petite fraction de Li+ (t+=0,15). Cela crée des gradients de concentration qui limitent les performances des batteries. Pour pallier cela, l’anion TFSI a été greffé sur le bloc PS (PSTFSI), augmentant le t+ à 1. Le bloc PSTFSI combiné à du POE modifié a permis des conductivités remarquables pour un électrolytes solide (10-6 S.cm-1 @ 40°C). Dans un second temps, l’ajout d’une chaine perfluorée entre le PS et l’anion a permis un gain supplémentaire de conductivité par rapport au PSTFSI (2.10-5 S.cm-1 @ 60°C), uniquement assurée par les Li+. Dans chacune des trois catégories d’électrolytes plusieurs compositions ont été synthétisées, nous permettant de suivre l’impact de cette composition sur les morphologies, les propriétés thermodynamique et mécanique ainsi que sur les propriétés de transport. Finalement, des batteries LMP de laboratoire ont été assemblées avec les meilleurs électrolytes
This work deals with synthesis and characterization of new polymer electrolytes for lithium metal polymer (LMP) batteries. The main challenge of polymer electrolytes is to combine both high ionic conductivity at low temperature and good mechanical properties. To overcome these issues, block copolymers have been designed. Remarkable properties are reached thanks to the self-assembly of these triblock copolymers. Mechanical properties are given by stiff polystyrene (PS) domains whereas ionic mobility operates in an ionophilic phase, polyoxyethylene (POE) with a lithium salt (LiTFSI). By introducing chemical defects in the POE backbone, melting temperature of the copolymer has been considerably lowered leading to conductivities of about 7.10-5 S.cm-1 and a Young’s modulus of 0.3 MPa at 40°C. If interesting properties are obtained thanks to this strategy, the small fraction of conductivity insured by lithium ions (t+=0.15) remains an issue. The low t+ leads to large concentration gradients limiting the performances of the system. In a second approach, TFSI anions have been covalently tethered on the PS backbone, raising the t+ to 1. An important increase of Li+ conductivity was obtained by adding a perfluorinated spacer between PS and TFSI moieties, with an ionophilic phase based on PEO (2.10-5 S.cm-1 @ 60°C). The chemical modification of the PEO block leads to Li+ conductivities of 10-6 S.cm-1 at 40°C. The composition of these different copolymers have been varied and their structural, thermal, mechanical and transport properties have been studied. Finally the best electrolytes of each category have been assessed in a full cell configuration
2

Teyssot, Anna. "Etude de l'interface lithium métal / électrolyte polymère fondu ou gélifié." Phd thesis, Ecole Polytechnique X, 2005. http://pastel.archives-ouvertes.fr/pastel-00001112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries à électrode lithium métal ont des capacités théoriques élevées, une différence de potentiel importante, des géométries adaptables. Leur développement à l'échelle industrielle est pourtant compromis par l'électrodépôt d'agrégats irréguliers de lithium (dendrites) lors de la recharge de la batterie. La croissance dendritique à faible densité de courant est mal comprise, et semble liée à une mauvaise distribution de la densité de courant locale du fait des inhomogénéités à l'interface lithium/électrolyte. Ce manuscrit présente nos résultats sur des cellules symétriques Li/Electrolyte/Li qui permettent d'étudier simultanément le dépôt et la dissolution du lithium. Ces cellules sont basées sur des systèmes à base de POE+LiTFSI fonctionnant à 80°C, et sur des systèmes à base de PVdF-HFP/POE imbibé en EC:PC+LiTFSI et fonctionnant à température ambiante. Nous avons étudié ces cellules par visualisation in situ de l'espace inter-électrodes, et par spectroscopie d'impédance. Sur des cellules de visualisation à base d'électrolyte polymère fondu chargé en sel coloré, nous avons observé l'évolution des profils d'absorption optique directement liés aux profils de concentration dans l'électrolyte. Sur le système à base d'électrolyte gélifié nous avons constaté des variations locales de densité de courant en cours de polarisation. Par impédance, nous mettons en évidence la présence de deux couches de passivation à l'interface lithium/électrolyte qui évoluent différemment en vieillissement. Lorsqu'on polarise une cellule à courant constant, sa réponse en tension met en évidence la présence d'un milieu peu diffusif à l'interface entre le lithium et l'électrolyte.
3

Hajndl, Ognjen. "Batterie tout solide pour application automobile : processus de mise en forme et étude des interfaces." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI026/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les attentes pour les prochaines générations de batteries pour le véhicule électrique sont grandes, que ce soit en termes d’autonomie, d’impact environnemental, de vitesse de charge et de coût. Les systèmes dits tout solide comprenant un électrolyte, non plus liquide, mais solide et non-inflammable pourrait répondre à ces attentes.La céramique de type grenat Li7La3Zr2O12 (LLZO) est un électrolyte solide prometteur au vue de sa bonne conductivité, stabilité chimique et électrochimique. La contrainte majeure réside dans le besoin de densifier la céramique à haute température afin de la rendre conductrice. Aucune méthode standard d’assemblage/mise en forme n’existe pour obtenir une cellule tout solide dense avec des interfaces peu résistives.Dans cette optique, les travaux de thèse ont permis d’optimiser le protocole de synthèse par voie « tout solide » de l’oxyde LLZO et sa mise en forme grâce à la technique de compression uniaxiale à chaud (CUC). Les conditions d’assemblage de cellules symétriques Li/LLZO/Li ont permis d’étudier l’interface Li-métal/LLZO et son impact sur la dissolution/redéposition du lithium. La faisabilité de densifier une « demi-cellule » (cathode composite/LLZO) en une seule étape a également été étudiée en ajustant les paramètres de température et pression du protocole de CUC
Next generation batteries expectations for electric vehicle are significant, whether in terms of autonomy, environmental impact, charging speed and cost. The all solid-state batteries with a non-flammable solid electrolyte, rather than the conventional liquid one, could meet those criteria.Garnet-type ceramic Li7La3Zr2O12 (LLZO) is a promising solid electrolyte given its good Li-ion conductivity, chemical and electrochemical stability. The major constraint is the need to densify the ceramic at high temperature in order to make it conductive. No standard method exists to build a dense all-solid cell with low interfacial resistance.In this context, the PhD work managed to optimize the solid-state synthesis protocol of the LLZO oxide and his densification by the hot-pressing technique. The conditions of symmetrical Li/LLZO/Li cell assembly allowed to study the Li-metal/LLZO interface and its impact on lithium plating/striping behavior. Feasibility of densifying a “half-cell” (composite cathode/LLZO) in one single step was also studied by adjusting the hot-pressing temperature and pressure parameters
4

Cipolla, Alex. "Etude et amélioration d'accumulateurs à anode de lithium métal en couplant modélisation et caractérisation." Thesis, Université Grenoble Alpes, 2022. https://tel.archives-ouvertes.fr/tel-03689299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le lithium métal représente le candidat optimal comme électrode négative dans les batteries au lithium, de par sa capacité théorique élevée (3860 mAh.g-1) et son faible potentiel (-3,04 V ESH). En revanche, l'inconvénient majeur de cette technologie est la formation de dendrites qui peut provoquer des emballements thermiques et des courts-circuits internes. Ces dernières sont également responsables de la durée de vie limitée des cellules lithium métal. La maîtrise de l’électrodépôt du lithium est nécessaire pour le développement de cette technologie haute densité d’énergie et demande une compréhension approfondie de ces phénomènes dendritiques.L’objectif de ce travail est de corréler données expérimentales et modèle afin de comprendre la formation et la croissance des dendrites. Le modèle permet de théoriser les conditions dans lesquelles la croissance des dendrites est facilitée ou évitée, et comment les propriétés des composants de la cellule et la nature de la surface d'électrode peuvent l'affecter, pour suggérer des solutions permettant de réduire les dendrites. D'autre part, la partie expérimentale a pour but de définir un cadre de techniques permettant de déterminer des paramètres fiables à utiliser dans le modèle, et de valider ses tendances.Le modèle continu proposé montre que l’interphase électrode/électrolyte (‘SEI’ pour Solid Electrolyte Interphase) est fondamentale pour évaluer la formation de dendrites et leur croissance, tandis que la définition d’une densité de courant limite n'est pas une condition suffisante pour éviter les dendrites. Cette prise en compte de la SEI dans le modèle permet d’étudier l'influence de ses propriétés mécaniques et électrochimiques sur la croissance dendritique. A partir de la géométrie de surface initiale et des propriétés électrochimiques et mécaniques des composants, le modèle est capable de prédire les conditions qui favorisent la croissance dendritique et de distinguer différentes morphologies de surface. Des dendrites arborescentes (tree-like), moussues (mossy-like) et whiskers sont obtenues selon la densité de courant appliquée. De plus, l'ajout de la mécanique de la SEI permet au modèle de faire la distinction entre la croissance induite par la pointe (tip-induced) et celle induite par la racine (root-induced). À partir des résultats du modèle, une SEI avec une faible résistivité, un coefficient de diffusion élevé et une vitesse de réaction rapide réduit la croissance des dendrites, tandis que la résistance mécanique de la SEI est une arme à double tranchant puisqu’une résistance élevée peut à la fois limiter l'expansion incontrôlée de l’électrode de lithium, mais également stimuler la croissance en cas de fractures.Enfin, les propriétés électrochimiques et mécaniques de la SEI formée dans un électrolyte liquide sont déterminées par spectroscopie d'impédance électrochimique (SIE) et microscopie à force atomique (AFM). L’évolution des spectres d'impédance en fonction du temps permet de caractériser l'évolution de la SEI et de déterminer ses propriétés (épaisseur, coefficient de diffusion et résistivité). D'autre part, l’AFM est utilisée dans le mode spectroscopie de force, à partir duquel il est possible de déterminer des valeurs locales du module de Young de la SEI. La spectrométrie photoélectronique X (XPS), capable d'identifier les composants chimiques à la surface des électrodes, permet de valider les résultats de l’AFM. Enfin, les tendances prédites par le modèle sont validées grâce à la mise au point d’une nouvelle configuration de cellule lithium métal, adaptée à une étude operando de l’électrodépôt du lithium métal par microscopie optique.Ce travail représente une étude complète de la formation et croissance des dendrites dans les accumulateurs au lithium métal. Tandis que seuls les électrolytes liquides sont considérés ici, la méthodologie pourrait tout à fait être étendue aux électrolytes solides et aux revêtements artificiels à la suite de ce travail
Lithium metal represents the optimal candidate for the negative electrode in lithium batteries, due to its high theoretical capacity (3860 mAh.g-1) and low potential (-3.04 V SHE). On the other hand, the major drawback of this technology is the formation of dendrites, which can cause thermal runaway and internal short-circuits, and are responsible for the limited lifetime of the cells. A dendrite-free lithium deposition is needed to improve this high energy density technology, thus, a deeper understanding of the phenomena and parameters that influence dendrite growth and formation is necessary.The goal of this work is the correlation between experiments and modelling, to understand the formation and the growth of dendrites. The output of the model allows one to theorize in which conditions dendrites growth is boosted or avoided, and how the properties of the cell components and the design of the electrode surface can affect it, to suggest solutions to reduce dendrites. On the other hand, the experimental work has the purpose to define a framework of techniques to find reliable parameters to be used in the model, and to validate the trends of the model.The proposed continuum model shows that the Solid Electrolyte Interphase (SEI) is fundamental to assess dendrites formation and growth, while the definition of a limiting current density is not a sufficient condition to avoid dendrites. Thanks to the introduction of the SEI concept and properties, the proposed model studies the influence of its mechanical and electrochemical properties on the dendritic growth. Starting from the initial surface geometry and the electrochemical and mechanical properties of the cell components, the model is able to predict the conditions that favours dendritic growth and to distinguish different surface morphologies. Tree-like, mossy-like and whisker dendrites are obtained, depending on the applied current density. Moreover, the addition of the mechanics of the SEI allows the model to distinguish between tip-induced growth and root-induced growth. From the model results, it can be concluded that a SEI with low resistivity, high diffusion coefficient and fast reaction rate can reduce dendrite growth, while the mechanical resistance of the SEI is a double-edge sword because it can limit the uncontrolled expansion of the lithium electrode but also boost the root-growth in case of fractures.Electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) techniques are used to find electrochemical and mechanical properties of the SEI formed in liquid electrolytes. By following electrochemical impedance response over time, it is possible to observe SEI evolution and determine mean values for its thickness, its diffusion coefficient and its conductivity. On the other hand, the AFM technique is used in the force spectroscopy mode, from which it is possible to determine local values of the SEI Young’s modulus. X-ray photoelectron spectroscopy (XPS) technique, which is able to identify the chemical components on the electrode surface, helps to validate the results of AFM. Finally, the trends predicted by the model are validated with a novel cell configuration suitable for an operando optical microscopy study of lithium metal stripping/plating.This work represents a comprehensive study on dendrites formation and growth in lithium metal batteries. While it considers only liquid electrolytes so far, as a perspective, it could easily be expanded to solid electrolytes and artificial coatings
5

Bertolotti, Bruno. "Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air." Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0676/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail porte sur la synthèse et la caractérisation de membranes polymères échangeuses d'anions, destinées à la protection de l'électrode à air dans une batterie lithium-air (en vue d'une application pour véhicule électrique). Ces matériaux à architecture de réseaux interpénétrés de polymères (RIP) associent un réseau polyélectrolyte cationique hydrocarboné, la poly(épichlorohydrine) (PECH), à un réseau de polymère neutre qui peut être soit hydrocarboné, soit fluoré. Tout d'abord, la synthèse du réseau polyélectrolyte et son assemblage sur l'électrode à air ont été optimisés. Une première série de RIP associant ce réseau PECH à un réseau de poly(méthacrylate d'hydroxyéthyle) a été synthétisée. Une seconde série de matériaux combinant ce même réseau PECH à un réseau de polymère fluoré a été développée. L'ensemble de ces matériaux a été caractérisé, et pour chaque série de RIP, la méthode de synthèse et la composition ont été optimisées. Les membranes RIP présentent des propriétés améliorées par rapport au réseau simple de PECH. L'électrode à air protégée par ces nouvelles membranes échangeuses d'anions présente une stabilité améliorée dans les conditions de fonctionnement de la batterie lithium-air. Plus précisément, une durée de vie de 1000 h est obtenue lorsque l'électrode à air a été modifiée avec un RIP fluoré, soit une augmentation d'un facteur 20 de la durée de vie de l'électrode non modifiée
This work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte network and the membrane/electrode assembly were optimized. Second, a first IPN series associating the PECH network with a poly(hydroxyethyl methacrylate) network was synthesized. Third, the same PECH network was associated with a fluorinated polymer network. All the materials were characterized, and optimal synthesis methods as well as an optimal composition were determined for each association. The IPNs show improved properties compared with the single PECH network. The air electrode protected by these new anion exchange membranes shows improved stability in the working conditions of the lithium-air battery. Specifically, a lifetime of 1000 h was obtained when the electrode was modified with a fluorinated IPN, a 20-fold increase in the lifetime of the non-modified electrode
6

Pelletier, Bérengère. "Caractérisation approfondie de copolymères triblocs PS-b-POE-b-PS utilisés en tant qu'Electrolytes Polymères Solides pour les batteries Lithium-Métal-Polymère." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4730/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aujourd’hui, la recherche sur les technologies de stockage d’énergie connaît un essor important dû au fort développement de l’électronique portable et des modes de transport écologiques. La plupart des batteries commercialisées utilisent des électrolytes liquides ou à base de liquides qui limitent leur stabilité thermique, la densité d’énergie et la sécurité. Ces limitations pourraient être considérablement diminuées par l’utilisation d’électrolytes polymères solides (SPE) et la technologie lithium métal polymère (LMP). L’objectif des SPE est de combiner au sein du même matériau une conductivité ionique élevée et une tenue mécanique suffisante pour éviter la formation de dentrites de lithium. Dans ce contexte, les copolymères triblocs PS-b-POE-b-PS, avec le POE comme bloc conducteur et le bloc PS apportant la résistance mécanique, sont d’excellents candidats. Afin d’établir des corrélations composition/morphologie/performance, le but de mes travaux de thèse est d’obtenir une caractérisation détaillée des copolymères à blocs synthétisés. Ainsi, les PS-b-POE-b-PS synthétisés (NMP) ont été analysés par chromatographie liquide aux conditions limites de désorption LC LCD. De plus, les analyses de la nano structuration (AFM, TEM et SAXS), des propriétés thermiques (DSC) et mécaniques (DMA) sont discutées. Enfin, des mesures d’impédance ont été effectuées via des cellules symétriques Lithium/ Electrolyte/ Lithium
The research on electrochemical storage of energy is today in a stage of fast and profound evolution owing to the strong development of portable electronics requesting power energy as well as the requirement of greener transport modes. Most commercial batteries use liquid or liquid-based electrolytes, which limits their thermal stability, energy density and safety. These limitations could be considerably offset by the use of solid polymer electrolytes (SPE) and lithium metal polymer technology (LMP). However, the main drawback of the SPE is the decrease of the ionic conductivity with increasing mechanical strength, necessary to avoid the formation of lithium dendrites during the recharge of the battery. In this context, triblock copolymers PS-b-PEO-b-PS with a PEO block as ionic conductor and PS block providing mechanical strength was a promising candidate as SPE. In order to build composition/morphology/performance relationships, the aim of my PhD is to characterize carefully the block copolymer. For that purpose, the PS-b-PEO-b-PS synthesized (NMP) were characterized using Liquid Chromatography under Limiting Conditions of Desorption (LC LCD). Furthermore, analyses of morphologies and nano-structure by Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) techniques, analyses of thermal (DSC) and mechanical (DSC) properties will be also discussed. Finally, measures of impedance were made via symmetric cells Lithium / Electrolyte / Lithium
7

Gle, David. "Synthèse de copolymères à architectures complexes à base de POE utilisés en tant qu'électrolytes polymères solides pour une application dans les batteries lithium métal-polymère." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4761/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le contexte d'un développement durable, les véhicules électriques apparaissent comme une solution incontournable dans le futur. Parmi les dernières évolutions sur les batteries, les systèmes constitués d'une électrode au lithium (technologie lithium métal) présente des performances remarquables en termes de densité d'énergie. L'inconvénient majeur de cette méthodologie est lié à la formation de dendrites lors de la recharge susceptibles d'occasionner des courts-circuits conduisant à l'explosion de la batterie. C'est dans cet axe que s'inscrit mon sujet de thèse dont l'objectif est de développer un électrolyte polymère solide présentant une conductivité ionique élevée (2.10-4 S.cm-1 à40°C) et une tenue mécanique suffisante (30 MPa) pour limiter les phénomènes de croissance dendritique. Pour cela, la polymérisation contrôlée par les nitroxydes (NMP) a été utilisée pour synthétiser des copolymères à blocs avec un bloc possédant des groupes d'oxyde d'éthylène –CH2-CH2-O- permettant la conduction des ions lithium et un bloc de polystyrène assurant la tenue mécanique de l'électrolyte final. Le bloc assurant la conduction ionique des architectures ainsi synthétisées sont constituées soit de POE sous forme linéaire soit de POE sous forme de peigne
In the context of sustainable development, electric vehicles appear to be a major solution for the future. Among the lastest technologies, the Lithium Metal Polymer battery has presented very interesting performances in terms of energy density. The main drawback of this system is the formation of lithium dendrites during the refill of the battery that could cause short circuits leading to the explosion of the battery. The aim of my PhD is to develop a Solid Polymer Electrolyte showing a high ionic conductivity (2.10-4 S.cm-1 at 40°C) and a high mechanical strength (30 MPa) to prevent dendritic growth. For that purpose, Nitroxide Mediated Polymerization is used to synthesize block copolymers with a PEO moiety for ionic conduction –CH2-CH2-O- and polystyrene for mechanical strength. Different kind of architectures have been synthesized : block copolymer with linear PEO moiety or with grafted PEO moiety
8

André, Pascal. "Etude de l'électrode positive à base de V2O5 utilisée dans des batteries industrielles lithium-métal à électrolyte polymère." Nantes, 2000. http://www.theses.fr/2000NANT2120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le pentoxyde de vanadium est un matériau de structure lamellaire très étudié pour ses caractéristiques d'intercalation du lithium. A ce titre, il est employé comme matériau d'intercalation cathodique pour batteries au lithium dans des systèmes tout solide à base de polymère (POE). Or les résultats obtenus en cyclage électrochimique sur des batteries fabriquées industriellement montrent un minimum de capacité vers le 20ème cycle. La partie cathodique de la batterie a été en premier lieu incriminé, ce qui a amené une étude morphologique (granulométrie LASER) et cristallographique (diffraction X) du matériau initial [alpha]-V2O5 ainsi que des différentes phases LixV2O5 se succédant lors de l'intercalation du lithium, jusqu'à la phase [oméga]-V2O5. Bien que du vanadium excédentaire ait été observé dans la structure de [alpha]-V2O5 de certains lots, ceci ne semble pas influer sur les caractéristiques des batteries
Vanadium pentoxide has been studied extensively for its use in lithium batteries due to its having a layered structure that provides good insertion/deinsertion behavior of lithium. This property has made it of great interest for all-solid polymer lithium battery systems
9

Devaux, Didier. "Caractérisation et optimisation de copolymères à blocs comme électrolytes de batteries lithium métal." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4748/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le facteur clé limitant le déploiement des accumulateurs au lithium métal est dû à la formation de dendrites de lithium métallique à l'anode au cours de la recharge. Une solution consiste à employer un électrolyte solide polymère. Un copolymère à blocs est composé d'un ou plusieurs blocs conducteurs à base de POE (poly(oxyde d'éthylène)), linéaire ou branchée, dopés en sel de lithium (LiTFSI) et de blocs de renforts mécaniques qui idéalement mitigent la croissance dendritique. Ces matériaux ont la particularité de s'auto-assembler en domaines nanométriques. Les interfaces entre les domaines génèrent de bonnes propriétés mécaniques à l'échelle macroscopique tandis que localement la dynamique des chaînes POE demeure élevée, assurant la conduction ionique.Ce travail de thèse porte sur les caractérisations physico-chimiques d'électrolytes copolymères, selon différentes architectures (diblocs, triblocs et étoilées) et de l'optimisation de leurs compositions. Une étude fondamentale des polymères dopés en sel a mis en évidence les principaux mécanismes de transport ionique, ainsi que l'impact des groupes terminaux à faible masse molaire sur la conductivité et la viscosité. Cette étape a permis de sélectionner les meilleurs candidats. L'étude de la stabilité des électrolytes vis-à-vis du lithium a été menée. Après avoir formulé des cathodes, des batteries plastiques ont été assemblées et testées avec succès par cyclages galvanostatiques, en température [40°C-100°C] et à des régimes élevés. Enfin, un prototype de 6 mAh a réalisé plus de 400 cycles à des régimes C/4 et D/2 à 100°C
The key limiting factor for the deployment of Lithium metal batteries is the formation of lithium dendrites at the anode during recharge. One solution consists in the use of a solid polymer electrolyte. A bloc copolymer is composed of one or several conductive blocks based on PEO (poly(ethylene oxide)), linear or branched, doped with a lithium salt (LiTFSI) and reinforced blocks that ideally mitigate the dendritic growth. These materials can self-organize in nanometric domains. The interfaces between the domains generate sufficient mechanical properties at the macroscopic level whilst, locally, the PEO chain dynamics remain high, ensuring ionic conduction.This thesis deals with physico-chemical characterizations of these copolymer electrolytes, with different architectures (diblock, triblock and star shaped), and the optimization of their composition. A fundamental study of doped polymers highlighted the main mechanisms of ionic transport and the impact of the end groups at low molar mass on conductivity and viscosity. This step enabled a selection of the best candidates to be made. A study of the electrolyte stability with respect to lithium was carried out. After the formulation of cathodes, plastic batteries were assembled and successfully tested by galvanostatic cycling under temperature [40°C-100°C] and high regime. Finally, a 6 mAh prototype realised more than 400 cycles under the regime C/4 and D/2 at 100°C
10

Tran, Nicolas. "Etude des phases Li1+x(Ni0. 425Mn0. 425Co0. 15)1-xO2 en tant que matériaux d'électrode positive pour batteries lithium-ion : effets de la surlithiation sur les propriétés structurales et électrochimiques." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
"Des matériaux lamellaires d'électrode positive pour batteries lithium-ion, de formule Li1+x(Ni0. 425Mn0. 425Co0. 15)1-xO2 (0 ≤ x ≤ 0. 12), ont été synthétisés par coprécipitation. Leurs propriétés structurales et physico-chimiques ont été caractérisées par diffraction (rayons X, neutrons et électrons), spectroscopie XPS, mesures magnétiques. . . La surlithiation (Li / (Ni+Mn+Co) > 1) entraîne la présence de lithium en excès dans le site des métaux de transition. Une surstructure de type √3. Ahex. X √3. A hex. Analogue à celle observée pour Li2MnO3 a été mise en évidence par diffraction électronique. Les propriétés électrochimiques et les modifications structurales observées au cours du cyclage ont été caractérisées pour ces matériaux. La surlithiation entraîne la présence d'un " plateau " de potentiel à ~ 4. 5V/Li pour le système Li // Li(Ni0. 425Mn0. 425Co0. 15)0. 88O2 ; celui-ci a été associé à des changements structuraux irréversibles mettant en jeu une réorganisation cationique dans les feuillets et une perte d'oxygène. "

До бібліографії