Статті в журналах з теми "Bimetallic nanocrystals"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bimetallic nanocrystals.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Bimetallic nanocrystals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Li, Gaojie, Wenshuang Zhang, Na Luo, Zhenggang Xue, Qingmin Hu, Wen Zeng, and Jiaqiang Xu. "Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing." Nanomaterials 11, no. 8 (July 26, 2021): 1926. http://dx.doi.org/10.3390/nano11081926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
2

Kim, Heon Chul, and Jong Wook Hong. "Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation." Nanomaterials 11, no. 1 (January 6, 2021): 112. http://dx.doi.org/10.3390/nano11010112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Highly porous Au–Pt urchin-like bimetallic nanocrystals have been prepared by a one-pot wet-chemical synthesis method. The porosity of urchin-like bimetallic nanocrystals was controlled by amounts of hydrazine used as reductant. The prepared highly porous Au-Pt urchin-like nanocrystals were superior catalysts of electrochemical methanol oxidation due to high porosity and surface active sites by their unique morphology. This approach will pave the way for the design of bimetallic porous materials with unprecedented functions.
3

Zhang, Qi, Yih Hong Lee, In Yee Phang, Srikanth Pedireddy, Weng Weei Tjiu, and Xing Yi Ling. "Bimetallic Platonic Janus Nanocrystals." Langmuir 29, no. 41 (October 2, 2013): 12844–51. http://dx.doi.org/10.1021/la403067h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Dingsheng, and Yadong Li. "Bimetallic Nanocrystals: Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications (Adv. Mater. 9/2011)." Advanced Materials 23, no. 9 (March 1, 2011): 1036. http://dx.doi.org/10.1002/adma.201190022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shetty, Amitha, Avijit Saha, Mahima Makkar, and Ranjani Viswanatha. "Ligand assisted digestion and formation of monodisperse FeCoS2 nanocrystals." Physical Chemistry Chemical Physics 18, no. 37 (2016): 25887–92. http://dx.doi.org/10.1039/c6cp04912e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sobal, Nelli S., and Michael Giersig. "Core - Shell Pd/Co Nanocrystals." Australian Journal of Chemistry 58, no. 5 (2005): 307. http://dx.doi.org/10.1071/ch04232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A method for the preparation of bimetallic Pd/Co nanoparticles with a core–shell structure is presented. The process involves synthesis of a pure Pd seed colloid using thermal decomposition of palladium acetylacetonate, Pd(acac)2. Reduction of cobalt acetate using a polyalcohol in the presence of the Pd seeds allows the formation of Pd-core/Co-shell nanocrystals. Transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), and superconducting quantum interference (SQUID) magnetometry were used to characterize the bimetallic system.
7

Zhang, Weiqing, and Xianmao Lu. "Morphology control of bimetallic nanostructures for electrochemical catalysts." Nanotechnology Reviews 2, no. 5 (October 1, 2013): 487–514. http://dx.doi.org/10.1515/ntrev-2013-0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractBimetallic nanostructures with well-defined shapes have shown distinct and advantageous catalytic properties compared to their monometallic counterparts. The use of bimetallic electrocatalysts may improve activity and durability, in addition to the possibility of reducing the loading of precious metals. A variety of bimetallic nanocrystals with different shapes has been reported in recent years. Their activities toward electrochemical catalytic reactions such as oxygen reduction and alcohol oxidations have been intensively studied. In this review, we discuss some latest developments in the morphology-controlled synthesis of Pt- and Pd-based bimetallic nanocrystals with shapes such as nanodendrites, polyhedra, porous hollow structures, and core shells, as well as their applications as electrochemical catalysts.
8

Gilroy, Kyle D., Aleksey Ruditskiy, Hsin-Chieh Peng, Dong Qin, and Younan Xia. "Bimetallic Nanocrystals: Syntheses, Properties, and Applications." Chemical Reviews 116, no. 18 (July 2016): 10414–72. http://dx.doi.org/10.1021/acs.chemrev.6b00211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Qiu, Jichuan, Quynh N. Nguyen, Zhiheng Lyu, Qiuxiang Wang, and Younan Xia. "Bimetallic Janus Nanocrystals: Syntheses and Applications." Advanced Materials 34, no. 1 (October 17, 2021): 2102591. http://dx.doi.org/10.1002/adma.202102591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Zhuoying, Limin Huang, Jiaqing He, Yimei Zhu, and Stephen O'Brien. "New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands." Journal of Materials Research 21, no. 12 (December 2006): 3187–95. http://dx.doi.org/10.1557/jmr.2006.0389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new nonhydrolytic route for the preparation of well-crystallized size-tunable barium titanate (BaTiO3) nanocrystals capped with surface ligands is reported. Our approach involves: (i) synthesizing a “pseudo” bimetallic precursor, and (ii) combining the as-synthesized bimetallic precursor with a mixture of oleylamine with different surface coordinating ligands at 320 °C for crystallization and crystal growth. Different alcohols in the precursor synthesis and different carboxylic acids were used to study the effect of size and morphological control over the nanocrystals. Nanocrystals of barium titanate with diameters of 6–10 nm (capped with decanoic acid), 3–5 nm (capped with oleic acid), 10–20 nm (a nanoparticle and nanorod mixture capped with oleyl alcohol), and 2–3 nm (capped with oleyl alcohol) were synthesized, and can be easily dispersed into nonpolar solvents such as hexane or toluene. Techniques including x-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy confirm the crystallinity and morphology of these as-synthesized nanocrystals.
11

Kim, Sungwon, Hiroki Mizuno, Masaki Saruyama, Masanori Sakamoto, Mitsutaka Haruta, Hiroki Kurata, Taro Yamada, Kazunari Domen, and Toshiharu Teranishi. "Phase segregated Cu2−xSe/Ni3Se4 bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts." Chemical Science 11, no. 6 (2020): 1523–30. http://dx.doi.org/10.1039/c9sc04371c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Balci, Fadime Mert, Sema Sarisozen, Nahit Polat, C. Meric Guvenc, Ugur Karadeniz, Ayhan Tertemiz, and Sinan Balci. "Laser assisted synthesis of anisotropic metal nanocrystals and strong light-matter coupling in decahedral bimetallic nanocrystals." Nanoscale Advances 3, no. 6 (2021): 1674–81. http://dx.doi.org/10.1039/d0na00829j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The advances in colloid chemistry and nanofabrication allowed us to synthesize noble monometallic and bimetallic nanocrystals with tunable optical properties in the visible and near infrared region of the electromagnetic spectrum.
13

Jia, Kun, Liting Yuan, Xuefei Zhou, Lin Pan, Pan Wang, Wenjin Chen, and Xiaobo Liu. "One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots." RSC Advances 5, no. 72 (2015): 58163–70. http://dx.doi.org/10.1039/c5ra08933f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ba, Rongbin, Yonghui Zhao, Lujing Yu, Jianjun Song, Shuangshuang Huang, Liangshu Zhong, Yuhan Sun, and Yan Zhu. "Synthesis of Co-based bimetallic nanocrystals with one-dimensional structure for selective control on syngas conversion." Nanoscale 7, no. 29 (2015): 12365–71. http://dx.doi.org/10.1039/c5nr02222c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Goo, Bon Seung, and Sang Woo Han. "Pd–Ag Bimetallic Catalysts with Core–Shell Engineering for Efficient Hydrogen Production from Formic Acid Decomposition." ECS Meeting Abstracts MA2022-01, no. 41 (July 7, 2022): 2400. http://dx.doi.org/10.1149/ma2022-01412400mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fine control of the ligand and strain effects of secondary elements on the catalytic function of primary elements is critical for developing high-performance bimetallic catalysts. In this paper, we describe a method for making Pd–Ag bimetallic core–shell nanocatalysts with synergistic ligand and Ag strain effects. (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with regulated core compositions and shell thicknesses, as well as a well-defined octahedral shape, could be achieved through precision core–shell engineering. The produced octahedral PdAg@Pd core–shell nanocrystals showed excellent catalytic activity in the creation of hydrogen from the breakdown of formic acid. The highest catalytic activity was attained using PdAg@Pd nanocrystals made up of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and a 1.1 atomic layer of Pd shells, which set a new record for catalytic activity.
16

Ying, Jie, Zhi-Yi Hu, Xiao-Yu Yang, Hao Wei, Yu-Xuan Xiao, Christoph Janiak, Shi-Chun Mu, et al. "High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability." Chemical Communications 52, no. 53 (2016): 8219–22. http://dx.doi.org/10.1039/c6cc00912c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Eid, Kamel, Hongjing Wang, Pei He, Kunmiao Wang, Tansir Ahamad, Saad M. Alshehri, Yusuke Yamauchi, and Liang Wang. "One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction." Nanoscale 7, no. 40 (2015): 16860–66. http://dx.doi.org/10.1039/c5nr04557f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhang, Yun, Yiren Wu, and Dong Qin. "Rational design and synthesis of bifunctional metal nanocrystals for probing catalytic reactions by surface-enhanced Raman scattering." Journal of Materials Chemistry C 6, no. 20 (2018): 5353–62. http://dx.doi.org/10.1039/c8tc01394b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kakade, Bhalchandra, Indrajit Patil, Moorthi Lokanathan, and Anita Swami. "Enhanced methanol electrooxidation at Pt skin@PdPt nanocrystals." Journal of Materials Chemistry A 3, no. 34 (2015): 17771–79. http://dx.doi.org/10.1039/c5ta03736k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wang, J., B. Lim, H. Kobayashi, H. Zhang, Y. Xia, and M. Kim. "Controlled Synthesis and Characterization of Bimetallic Nanocrystals." Microscopy and Microanalysis 17, S2 (July 2011): 1624–25. http://dx.doi.org/10.1017/s1431927611008993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yu, Fengjiao, and Wuzong Zhou. "Alloying and dealloying of CuPt bimetallic nanocrystals." Progress in Natural Science: Materials International 23, no. 3 (June 2013): 331–37. http://dx.doi.org/10.1016/j.pnsc.2013.04.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kwon, Ik Seon, Tekalign Terfa Debela, In Hye Kwak, Hee Won Seo, Kidong Park, Doyeon Kim, Seung Jo Yoo, Jin-Gyu Kim, Jeunghee Park, and Hong Seok Kang. "Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals." Journal of Materials Chemistry A 7, no. 40 (2019): 22879–83. http://dx.doi.org/10.1039/c9ta06285h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Varade, Dharmesh, and Kazutoshi Haraguchi. "Clay-supported novel bimetallic core–shell Co–Pt and Ni–Pt nanocrystals with high catalytic activities." Phys. Chem. Chem. Phys. 16, no. 47 (2014): 25770–74. http://dx.doi.org/10.1039/c4cp04194a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zhang, Lei, Shengnan Yu, Jijie Zhang, and Jinlong Gong. "Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities." Chemical Science 7, no. 6 (2016): 3500–3505. http://dx.doi.org/10.1039/c6sc00083e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gan, Lin, Chunhua Cui, Marc Heggen, Fabio Dionigi, Stefan Rudi, and Peter Strasser. "Element-specific anisotropic growth of shaped platinum alloy nanocrystals." Science 346, no. 6216 (December 18, 2014): 1502–6. http://dx.doi.org/10.1126/science.1261212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Morphological shape in chemistry and biology owes its existence to anisotropic growth and is closely coupled to distinct functionality. Although much is known about the principal growth mechanisms of monometallic shaped nanocrystals, the anisotropic growth of shaped alloy nanocrystals is still poorly understood. Using aberration-corrected scanning transmission electron microscopy, we reveal an element-specific anisotropic growth mechanism of platinum (Pt) bimetallic nano-octahedra where compositional anisotropy couples to geometric anisotropy. A Pt-rich phase evolves into precursor nanohexapods, followed by a slower step-induced deposition of an M-rich (M = Ni, Co, etc.) phase at the concave hexapod surface forming the octahedral facets. Our finding explains earlier reports on unusual compositional segregations and chemical degradation pathways of bimetallic polyhedral catalysts and may aid rational synthesis of shaped alloy catalysts with desired compositional patterns and properties.
26

Li, Ming, and Tian-Shu Zhu. "Modeling the melting temperature of nanoscaled bimetallic alloys." Physical Chemistry Chemical Physics 18, no. 25 (2016): 16958–63. http://dx.doi.org/10.1039/c6cp01742h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Alam, Md Jahangir, Masaharu Tsuji, Mika Matsunaga, and Daiki Yamaguchi. "Shape changes in Au–Ag bimetallic systems involving polygonal Au nanocrystals to spherical Au/Ag alloy and excentered Au core Ag/Au alloy shell particles under oil-bath heating." CrystEngComm 13, no. 8 (2011): 2984–93. http://dx.doi.org/10.1039/c0ce00899k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Cargnello, Matteo, Vicky V. T. Doan-Nguyen, and Christopher B. Murray. "Engineering uniform nanocrystals: Mechanism of formation and self-assembly into bimetallic nanocrystal superlattices." AIChE Journal 62, no. 2 (October 14, 2015): 392–98. http://dx.doi.org/10.1002/aic.15063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gamler, Jocelyn T. L., Alberto Leonardi, Xiahan Sang, Kallum M. Koczkur, Raymond R. Unocic, Michael Engel, and Sara E. Skrabalak. "Effect of lattice mismatch and shell thickness on strain in core@shell nanocrystals." Nanoscale Advances 2, no. 3 (2020): 1105–14. http://dx.doi.org/10.1039/d0na00061b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bimetallic nanocrystals with core@shell architectures are versatile particles. Geometric phase analysis of TEM images and atomistic simulations are coupled to reveal the lattice relaxation as a function of lattice mismatch and shell thickness.
30

Gao, Li-Min, Jia-Hui Zhao, Tao Li, Rui Li, Hai-Quan Xie, Pei-Lin Zhu, Xin-Yue Niu, and Kui Li. "High-performance TiO2 photocatalyst produced by the versatile functions of the tiny bimetallic MOF-derived NiCoS-porous carbon cocatalyst." CrystEngComm 21, no. 24 (2019): 3686–93. http://dx.doi.org/10.1039/c9ce00529c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bimetallic zeolitic imidazolate framework (NiCo-ZIF)-templated NiCoS-porous carbon (PC) at only 0.2 at% exhibited versatile effects on the morphology as well as the photocatalytic hydrogen performance of TiO2 nanocrystals.
31

Chen, Zheng, Rongan Shen, Chen Chen, Jinpeng Li, and Yadong Li. "Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling." Chemical Communications 54, no. 93 (2018): 13155–58. http://dx.doi.org/10.1039/c8cc06744a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Wang, Dingsheng, and Yadong Li. "Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications." Advanced Materials 23, no. 9 (January 7, 2011): 1044–60. http://dx.doi.org/10.1002/adma.201003695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wang, Shuo, Fengqian Wang, Hongdong Liu, Haowei Huang, Xiaomin Meng, Yirui Ouyang, Mengchao Jiang, et al. "Defective PdRh bimetallic nanocrystals enable enhanced methanol electrooxidation." Colloids and Surfaces A: Physicochemical and Engineering Aspects 616 (May 2021): 126323. http://dx.doi.org/10.1016/j.colsurfa.2021.126323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wang, Jing, Wei Teng, Lan Ling, Jianwei Fan, Wei-xian Zhang, and Zilong Deng. "Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon." Environmental Science: Nano 7, no. 5 (2020): 1496–506. http://dx.doi.org/10.1039/d0en00087f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bondarchuk, Ivan, Francisco José Cadete Santos Aires, Grigoriy Mamontov та Irina Kurzina. "Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3". Crystals 11, № 4 (19 квітня 2021): 444. http://dx.doi.org/10.3390/cryst11040444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One of the key factors for producing highly dispersed controlled nanoparticles is the method used for metal deposition. The decomposition of metal-organic precursors is a good method for deposition of metal nanoparticles with very small sizes and narrow size distributions on the surface of various supports. The preparation process of Pd and bimetallic Pd-Sn nanoparticles supported onto γ-Al2O3 is considered. The samples were prepared by diffusional co-impregnation of the γ-Al2O3 support by using organometallic Pd(acac)2 and Sn(acac)2Cl2 precursors. To achieve the formation of Pd and bimetallic Pd-Sn nanoparticles on the support surface, the synthesized samples were then subjected to thermal decomposition under Ar (to decompose the organometallic bound to the surface while keeping the formed nanoparticles small) followed by an oxidation in O2 (to eliminate the organic compounds remaining on the surface) and a reduction in H2 (to reduce the nanoparticles oxidized during the previous step). A combination of methods (ICP-OES, TPR-H2, XPS, TEM/EDX) was used to compare the physical-chemical properties of the synthesized Pd and bimetallic Pd-Sn nanoparticles supported on the γ-Al2O3. The three samples exhibit narrow size distribution with a majority on nanoparticles between 3 and 5 nm. Local EDX measurements clearly showed that the nanoparticles are bimetallic with the expected chemical composition and the measured global composition by ICP-OES. The surface composition and electronic properties of Pd and Sn on the γ-Al2O3 support were investigated by XPS, in particular the chemical state of palladium and tin after each step of thermal decomposition treatments (oxidation, reduction) by the XPS method has been carried out. The reducibility of the prepared bimetallic nanoparticles was measured by hydrogen temperature programmed reduction (TPR-H2). The temperature programmed reduction TPR-H2 experiments have confirmed the existence of strong surface interactions between Pd and Sn, as evidenced by hydrogen spillover of Pd to Sn (Pd-assisted reduction of oxygen precovered Sn). These results lead us to propose a mechanism for the formation of the bimetallic nanoparticles.
36

Zhang, Lei, Zhaoxiong Xie, and Jinlong Gong. "Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications." Chemical Society Reviews 45, no. 14 (2016): 3916–34. http://dx.doi.org/10.1039/c5cs00958h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Pramadewandaru, Respati K., Jeong-Hu Shim, Young Wook Lee, and Jong Wook Hong. "Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals." Catalysts 11, no. 11 (November 5, 2021): 1337. http://dx.doi.org/10.3390/catal11111337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The exploration of efficient nanocatalysts with high activity and stability towards water electrolysis and fuel cell applications is extremely important for the advancement of electrochemical reactions. However, it remains challenging. Controlling the morphology of bimetallic Pd–Pt nanostructures can be a great way to improve their electrocatalytic properties compared with previously developed catalysts. Herein, we synthesize bimetallic Pd–Pt nanodendrites, which consist of a dense matrix of unsaturated coordination atoms and high porosity. The concentration of cetyltrimethylammonium chloride was significant for the morphology and size of the Pd–Pt nanodendrites. Pd–Pt nanodendrites prepared by cetyltrimethylammonium chloride (200 mM) showed higher activities towards both the hydrogen evolution reaction and methanol oxidation reaction compared to their different Pd–Pt nanodendrite counterparts, commercial Pd, and Pt catalysts, which was attributed to numerous unsaturated surface atoms in well-developed single branches.
38

Quintanilla, Marta, Christian Kuttner, Joshua D. Smith, Andreas Seifert, Sara E. Skrabalak, and Luis M. Liz-Marzán. "Heat generation by branched Au/Pd nanocrystals: influence of morphology and composition." Nanoscale 11, no. 41 (2019): 19561–70. http://dx.doi.org/10.1039/c9nr05679c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Trivedi, Manoj, Bhaskaran Bhaskaran, Akshay Kumar, Gurmeet Singh, Abhinav Kumar, and Nigam P. Rath. "Metal–organic framework MIL-101 supported bimetallic Pd–Cu nanocrystals as efficient catalysts for chromium reduction and conversion of carbon dioxide at room temperature." New Journal of Chemistry 40, no. 4 (2016): 3109–18. http://dx.doi.org/10.1039/c5nj02630j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A series of bimetallic Pd–Cu nanocrystals supported on the zeolite-type metal–organic framework MIL-101 and their application in the reduction of Cr(vi) to Cr(iii) using formic acid and the conversion of terminal alkynes into propiolic acids with CO2 are reported.
40

Ma, Xianfeng, Rui Lin, Robert Y. Ofoli, Zhi Mei, and James E. Jackson. "Structural and morphological evaluation of Ru–Pd bimetallic nanocrystals." Materials Chemistry and Physics 173 (April 2016): 1–6. http://dx.doi.org/10.1016/j.matchemphys.2016.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Mao, Junjie, Yuxi Liu, Zheng Chen, Dingsheng Wang, and Yadong Li. "Bimetallic Pd–Cu nanocrystals and their tunable catalytic properties." Chemical Communications 50, no. 35 (2014): 4588. http://dx.doi.org/10.1039/c4cc01051e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lim, Byungkwon, Hirokazu Kobayashi, Taekyung Yu, Jinguo Wang, Moon J. Kim, Zhi-Yuan Li, Matthew Rycenga, and Younan Xia. "Synthesis of Pd−Au Bimetallic Nanocrystals via Controlled Overgrowth." Journal of the American Chemical Society 132, no. 8 (March 3, 2010): 2506–7. http://dx.doi.org/10.1021/ja909787h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bai, Tingting, Peng Lu, Kangzhen Zhang, Ping Zhou, Ying Liu, Zhirui Guo, and Xiang Lu. "Gold/Silver Bimetallic Nanocrystals: Controllable Synthesis and Biomedical Applications." Journal of Biomedical Nanotechnology 13, no. 10 (October 1, 2017): 1178–209. http://dx.doi.org/10.1166/jbn.2017.2423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Demortière, Arnaud, Rémi Losno, Christophe Petit, and Jean-Paul Quisefit. "Composition study of CoPt bimetallic nanocrystals of 2 nm." Analytical and Bioanalytical Chemistry 397, no. 4 (May 9, 2010): 1485–91. http://dx.doi.org/10.1007/s00216-010-3689-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ghosh, Sirshendu, Saikat Khamarui, Manas Saha, and S. K. De. "Fabrication of tungsten nanocrystals and silver–tungsten nanonets: a potent reductive catalyst." RSC Advances 5, no. 49 (2015): 38971–76. http://dx.doi.org/10.1039/c4ra16567e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Yin, Yanru, Changna Wen, Ning Ma, Baoyan Wang, Lianying Zhang, Hongliang Li, and Peizhi Guo. "Sodium Alginate-Assisted Synthesis of PdAg Bimetallic Nanoparticles and their Enhanced Activity for Electrooxidation of Ethanol." Nano 14, no. 09 (September 2019): 1950120. http://dx.doi.org/10.1142/s1793292019501200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Palladium and palladium-silver bimetallic nanocrystals have been synthesized hydrothermally by using environmental-friendly sodium alginate as the stabilizer and reducing agent. The pure palladium nanoparticles were spherical-like possibly due to the principle of the lowest surface energy, however, the formation of bimetallic palladium-silver nanoparticles was much more complicated, which was thinner and more irregular nanostructures than pure palladium nanoparticles. Electrochemical measurements showed that the electrocatalytic activity toward ethanol oxidation was increased first with the increase of silver content in bimetallic nanoparticles, from pure palladium of around 1070[Formula: see text]mA/mg, to PdAg-20 of 1160[Formula: see text]mA/mg and to PdAg-10 of 1750[Formula: see text]mA/mg, and declined greatly at a high content of silver, approximately 279[Formula: see text]mA/mg. Electrochemical stability test showed that PdAg-10 and PdAg-5 were the best and worst among four palladium-based samples, respectively. Based on the experimental data, the formation mechanism of pure palladium and palladium-silver bimetallic nanoparticles and the structure-property relationship of these samples have been discussed.
47

Wang, Kuan-Wen, Zhuang Yu, Alice Hu, Yang-Yang Hsu, Tian-Lin Chen, Cheng-Yang Lin, Chih-Wei Hu, Ya-Tang Yang, and Tsan-Yao Chen. "Rapid crystal growth of bimetallic PdPt nanocrystals with surface atomic Pt cluster decoration provides promising oxygen reduction activity." RSC Advances 7, no. 87 (2017): 55110–20. http://dx.doi.org/10.1039/c7ra08405f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A PdPt nanocatalyst with high density atomic Pt cluster in Pd nanocrystal surface is developed by a rapid crystal growth method. Such a heterogeneous structure offers easy oxygen reduction pathways with promising mass activity in bimetallic PdPt nanocatalyst.
48

Duan, Si-Bin, and Rong-Ming Wang. "Controlled growth of Au/Ni bimetallic nanocrystals with different nanostructures." Rare Metals 36, no. 4 (July 1, 2016): 229–35. http://dx.doi.org/10.1007/s12598-016-0791-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kakade, Bhalchandra A., Hailin Wang, Takanori Tamaki, Hidenori Ohashi, and Takeo Yamaguchi. "Enhanced oxygen reduction reaction by bimetallic CoPt and PdPt nanocrystals." RSC Advances 3, no. 26 (2013): 10487. http://dx.doi.org/10.1039/c3ra40920a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Yijun, Yu Jin, Meiling He, Lei Zhou, Tao Xu, Rongrong Yuan, Sai Lin, Weidong Xiang, and Xiaojuan Liang. "Optical properties of bimetallic Au-Cu nanocrystals embedded in glass." Materials Research Bulletin 98 (February 2018): 94–102. http://dx.doi.org/10.1016/j.materresbull.2017.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії