Статті в журналах з теми "Bimetallic NiFe oxide nanoparticles"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bimetallic NiFe oxide nanoparticles.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Bimetallic NiFe oxide nanoparticles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhuang, Min, Wen Shi, Hui Wang, Liqiang Cui, Guixiang Quan, and Jinlong Yan. "Carbothermal Synthesis of Ni/Fe Bimetallic Nanoparticles Embedded into Graphitized Carbon for Efficient Removal of Chlorophenol." Nanomaterials 11, no. 6 (May 27, 2021): 1417. http://dx.doi.org/10.3390/nano11061417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The reactivity of nanoscale zero-valent iron is limited by surface passivation and particle agglomeration. Here, Ni/Fe bimetallic nanoparticles embedded into graphitized carbon (NiFe@GC) were prepared from Ni/Fe bimetallic complex through a carbothermal reduction treatment. The Ni/Fe nanoparticles were uniformly distributed in the GC matrix with controllable particle sizes, and NiFe@GC exhibited a larger specific surface area than unsupported nanoscale zero-valent iron/nickel (FeNi NPs). The XRD results revealed that Ni/Fe bimetallic nanoparticles embedded into graphitized carbon were protected from oxidization. The NiFe@GC performed excellently in 2,4,6-trichlorophenol (TCP) removal from an aqueous solution. The removal efficiency of TCP for NiFe@GC-50 was more than twice that of FeNi nanoparticles, and the removal efficiency of TCP increased from 78.5% to 94.1% when the Ni/Fe molar ratio increased from 0 to 50%. The removal efficiency of TCP by NiFe@GC-50 can maintain 76.8% after 10 days of aging, much higher than that of FeNi NPs (29.6%). The higher performance of NiFe@GC should be ascribed to the significant synergistic effect of the combination of NiFe bimetallic nanoparticles and GC. In the presence of Ni, atomic H* generated by zero-valent iron corrosion can accelerate TCP removal. The GC coated on the surface of Ni/Fe bimetallic nanoparticles can protect them from oxidation and deactivation.
2

Liu, Yan, Yanxiu Chi, Shiyao Shan, Jun Yin, Jin Luo, and Chuan-Jian Zhong. "Characterization of magnetic NiFe nanoparticles with controlled bimetallic composition." Journal of Alloys and Compounds 587 (February 2014): 260–66. http://dx.doi.org/10.1016/j.jallcom.2013.10.203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Yan, Yan Xiu Chi, Xin Yan Li, Shu Ai Wang, and Sheng Lin. "Research Development on the Preparation of NiFe Magnetic Nanoparticles." Advanced Materials Research 756-759 (September 2013): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The study of NiFe magnetic nanoparticles (MNPs) has a wide range of applications because of the unique composition and its magnetism. In this paper, a brief review is presented on the different methods for the preparation of the bimetallic magnetic nanoparticles, along with our preliminary work on the synthesis of this kind of alloy nanoparticles.
4

Deng, Zhe-Peng, Yu Sun, Yong-Cheng Wang, and Jian-De Gao. "A NiFe Alloy Reduced on Graphene Oxide for Electrochemical Nonenzymatic Glucose Sensing." Sensors 18, no. 11 (November 15, 2018): 3972. http://dx.doi.org/10.3390/s18113972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A NiFe alloy nanoparticle/graphene oxide hybrid (NiFe/GO) was prepared for electrochemical glucose sensing. The as-prepared NiFe/GO hybrid was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that NiFe alloy nanoparticles can be successfully deposited on GO. The electrochemical glucose sensing performance of the as-prepared NiFe/GO hybrid was studied by cyclic voltammetry and amperometric measurement. Results showed that the NiFe/GO-modified glassy carbon electrode had sensitivity of 173 μA mM−1 cm−2 for glucose sensing with a linear range up to 5 mM, which is superior to that of commonly used Ni nanoparticles. Furthermore, high selectivity for glucose detection could be achieved by the NiFe/GO hybrid. All the results demonstrated that the NiFe/GO hybrid has promise for application in electrochemical glucose sensing.
5

Margossian, Tigran, Kim Larmier, Sung Min Kim, Frank Krumeich, Christoph Müller, and Christophe Copéret. "Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance." ACS Catalysis 7, no. 10 (September 14, 2017): 6942–48. http://dx.doi.org/10.1021/acscatal.7b02091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Jingtao, Yu Ding, Lifei Ji, Xin Zhang, Fengchun Yang, Jiading Wang, and Weidong Kang. "Highly sensitive detection of Cr(vi) in groundwater by bimetallic NiFe nanoparticles." Analytical Methods 9, no. 6 (2017): 1031–37. http://dx.doi.org/10.1039/c6ay03089k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hexavalent chromium (Cr(vi)) is one of the most toxic heavy metal pollutants in groundwater, and thus the detection of Cr(vi) with high sensitivity, accuracy, and simplicity and low cost is of great importance.
7

Wang, Minghua, Longyu Yang, Bin Hu, Jiameng Liu, Linghao He, Qiaojuan Jia, Yingpan Song, and Zhihong Zhang. "Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate." Biosensors and Bioelectronics 113 (August 2018): 16–24. http://dx.doi.org/10.1016/j.bios.2018.04.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Yanlin, Chaowei Jia, Qiuyue Wang, Quan Kong, Gang Chen, Hongtao Guan, and Chengjun Dong. "MOFs-Derived Porous NiFe2O4 Nano-Octahedrons with Hollow Interiors for an Excellent Toluene Gas Sensor." Nanomaterials 9, no. 8 (July 24, 2019): 1059. http://dx.doi.org/10.3390/nano9081059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Toluene is extensively used in many industrial products, which needs to be effectively detected by sensitive gas sensors even at low-ppm-level concentrations. Here, NiFe2O4 nano-octahedrons were calcinated from NiFe-bimetallic metal-organic framework (MOFs) octahedrons synthesized by a facile refluxing method. The co-existence of p-Phthalic acid (PTA) and 3,3-diaminobenzidine (DAB) promotes the formation of smooth NiFe-bimetallic MOFs octahedrons. After subsequent thermal treatment, a big weight loss (about 85%) transformed NiFe2O4 nanoparticles (30 nm) into NiFe2O4 porous nano-octahedrons with hollow interiors. The NiFe2O4 nano-octahedron based sensor exhibited excellent gas sensing properties for toluene with a nice stability, fast response, and recovery time (25 s/40 s to 100 ppm toluene), and a lower detection limitation (1 ppm) at 260 °C. The excellent toluene-sensing properties can not only be derived from the hollow interiors combined with porous nano-octahedrons to favor the diffusion of gas molecules, but also from the efficient catalytic activity of NiFe2O4 nanoparticles.
9

Qu, Xinghao, Yuanliang Zhou, Xiyang Li, Muhammad Javid, Feirong Huang, Xuefeng Zhang, Xinglong Dong, and Zhidong Zhang. "Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber." Inorganic Chemistry Frontiers 7, no. 5 (2020): 1148–60. http://dx.doi.org/10.1039/c9qi01577a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lanin, S. N., A. A. Bannykh, E. V. Vlasenko, N. V. Kovaleva, S. M. Levachev, and R. F. Akhundov. "Adsorption properties of alumina modified with nickel oxide nanoparticles and silver-nickel oxide bimetallic nanoparticles." Protection of Metals and Physical Chemistry of Surfaces 50, no. 6 (November 2014): 739–46. http://dx.doi.org/10.1134/s2070205114060112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nemade, K. R., and S. A. Waghuley. "LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles." St. Petersburg Polytechnical University Journal: Physics and Mathematics 1, no. 3 (October 2015): 249–55. http://dx.doi.org/10.1016/j.spjpm.2015.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Folch, Benjamin, Joulia Larionova, Yannick Guari, Lucien Datas, and Christian Guérin. "A coordination polymer precursor approach to the synthesis of NiFe bimetallic nanoparticles within hybrid mesoporous silica." J. Mater. Chem. 16, no. 45 (2006): 4435–42. http://dx.doi.org/10.1039/b608058h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cai, Shuguang, Chan Zheng, Xueqing Xiao, and Xiaoyun Ye. "Synthesis and Optical Limiting Properties of Graphene Oxide/Bimetallic Nanoparticles." Nano 11, no. 03 (March 2016): 1650033. http://dx.doi.org/10.1142/s1793292016500338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zheng, Chan, Wei Li, Xueqing Xiao, Xiaoyun Ye, and Wenzhe Chen. "Synthesis and optical limiting properties of graphene oxide/bimetallic nanoparticles." Optik 127, no. 4 (February 2016): 1792–96. http://dx.doi.org/10.1016/j.ijleo.2015.11.094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hassan, H., T. Zaki, S. Mikhail, A. Kandil, and A. Farag. "Optimization of the Synthesis of Nanostructured Tungsten-Molybdenum Bimetallic Oxide." ISRN Nanomaterials 2012 (September 10, 2012): 1–13. http://dx.doi.org/10.5402/2012/909647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
nanoparticles were prepared through the Pechini process and were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR spectrometer, and differential thermal analysis (TG-DSC) analyses. The polyesterification reaction, as the starting step, has a profound influence on the dispersion of the resulting nanoparticles. The molar ratios CA : TM = 2 and EG : CA = 1.5 are favorable for the preparation of nanoparticles having average particles size ranging from 2 to 9 nm. Meanwhile, the molar ratios CA : TM = 4 and EG : CA = 0.19 are favorable for the preparation of nanoparticles having an average particles size ranging from 11 to 29 nm. For the calcination step, increased calcination time (eight hours) at 500°C is advantageous for allowing the monometallic phases enough time to transform into the desired bimetallic phase.
16

Tan, Ting, Mingxia Qin, Kang Li, Mingyang Zhou, Taikai Liu, Chenghao Yang та Min Liu. "In-situ exsolved NiFe alloy nanoparticles on Pr0.8Sr1.2(NiFe)O4-δ for direct hydrocarbon fuel solid oxide fuel cells". International Journal of Hydrogen Energy 45, № 53 (жовтень 2020): 29407–16. http://dx.doi.org/10.1016/j.ijhydene.2020.07.250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hu, Jun, and Ai Min Chen. "Synthesis and Characteristic of NiFe/NiFe2O4 Core-Shell Magnetic Nanocomposite Particles ." Advanced Materials Research 486 (March 2012): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.486.65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
NiFe/NiFe2O4 core-shell bimagnetic nanocomposite particles were successfully synthesized by colloidal chemical method combined with H2 reduction. The whole structural evolution process has been well studied through analysis of X-ray diffraction patterns and Infrared spectra. It has been found that FeNi alloy concentrated in the ferrite phase. The core/shell structure, a FeNi alloy core surrounded by NiFe2O4 spinel oxide shell were verified by X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The influence of post H2 heat treatment temperature on nanoparticles was investigated. The core-shell NiFe/ NiFe2O4 nanoparticles was about 100 nm after reduced at 727 K, The powders exhibited paramagnetic properties and the magnetization was 29.9 emu·g-1.
18

Romanovsky, Valentin I., Alexander A. Hort, Kirill B. Podbolotov, Nikolay Yu Sdobnyakov, Vladimir S. Myasnichenko, and Denis N. Sokolov. "ONE-STEP SYNTHESIS OF POLYMETALLIC NANOPARTICLES IN AIR INVIRONMENT." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, no. 9-10 (October 22, 2018): 42–47. http://dx.doi.org/10.6060/ivkkt.20186109-10.5867a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, we studied possibility to obtain bimetallic nanopowders by our modified solution combustion synthesis method using citric acid as a fuel. Stoichiometric amounts of metal nitrates with metal to metal ratios 1:1 and 1:2 and fuels with final oxidizer to fuel ratio of 1.75 were used as initial components to prepare aqueous solutions. The almost complete absence of metal oxide phases was confirmed by energy-dispersive X-ray spectroscopy. The X-ray diffraction analysis of obtained materials showed that all samples are pure bimetallic nanopowders with distorted cubic crystal structure of each metal. According to high resolution transmission electron microscopy the mean diameter of metallic particles are about 10 nm for all nanopowders. The calculated interplanar distances of crystals of metal particles as well as detailed scanning transmission electron microscopy studying showed uniform distribution of different metal spices into nanoparticles. Thus, we can conclude the nanopowders are bimetallic particles with co-integrated crystal structures of different metalic spices. We suppose, the possibility of solution combustion synthesis of bimetallic nanopowder in the air environment is due to a combination of type and amount of the fuels as well as technological conditions of the synthesis. These lead to rapid combustion process at low temperature. In addition, protective inert atmosphere appears above freshly synthesized metal nanopowders during thermal decompositions of the fuels that eventually prevent metal oxidation. Modified SCS method could be successfully used for one-step synthesis of complex oxide-oxide and metal-oxide core-shell nanostructures. For citation: Romanovskii V.I., Khort A.A., Podbolotov K.B., Sdobnyakov N.Y., Myasnichenko V.S., Sokolov D.N. One-step synthesis of polymetallic nanoparticles in air invironment. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 42-47
19

Bayal, Nisha, and P. Jeevanandam. "Synthesis of NiO Based Bimetallic Mixed Metal Oxide Nanoparticles by Sol-Gel Method." Advanced Materials Research 585 (November 2012): 164–68. http://dx.doi.org/10.4028/www.scientific.net/amr.585.164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nickel oxide based bimetallic mixed metal oxide nanoparticles are of considerable interest and they have been used as catalysts for NOx decomposition and as reactive adsorbents for ultra deep desulfurization. In the present study, nanoparticles of NiO-ZnO, NiO-CuO and NiO-MgO were synthesized by sol-gel method. The mixed metal oxide nanoparticles were characterized by X-ray diffraction, diffuse reflectance spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Pure NiO nanoparticles show a band gap of 4.24 eV and the band gap shows a blue shift or red shift in the case of mixed metal oxide nanoparticles.
20

Lee, Heon, In-Soo Park, Young-Kwon Park, Kay-Hyeok An, Byung-Joo Kim, and Sang-Chul Jung. "Facile Preparation of Ni-Co Bimetallic Oxide/Activated Carbon Composites Using the Plasma in Liquid Process for Supercapacitor Electrode Applications." Nanomaterials 10, no. 1 (December 26, 2019): 61. http://dx.doi.org/10.3390/nano10010061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, a plasma in a liquid process (PiLP) was used to facilely precipitate bimetallic nanoparticles composed of Ni and Co elements on the surface of activated carbon. The physicochemical and electrochemical properties of the fabricated composites were evaluated to examine the potential of supercapacitors as electrode materials. Nickel and cobalt ions in the aqueous reactant solution were uniformly precipitated on the AC surface as spherical nanoparticles with a size of about 100 nm by PiLP reaction. The composition of nanoparticles was determined by the molar ratio of nickel and cobalt precursors and precipitated in the form of bimetallic oxide. The electrical conductivity and specific capacitance were increased by Ni-Co bimetallic oxide nanoparticles precipitated on the AC surface. In addition, the electrochemical performance was improved by stable cycling stability and resistance reduction and showed the best performance when the molar ratios of Ni and Co precursors were the same.
21

Branco, Joaquim B., Ana C. Ferreira, T. Almeida Gasche, and João P. Leal. "Electrospun lanthanide bimetallic oxide nanoparticles and nanofibers for partial oxidation of methane." Nano-Structures & Nano-Objects 15 (July 2018): 75–83. http://dx.doi.org/10.1016/j.nanoso.2017.08.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Auten, Bethany J., Huifang Lang, and Bert D. Chandler. "Dendrimer templates for heterogeneous catalysts: Bimetallic Pt–Au nanoparticles on oxide supports." Applied Catalysis B: Environmental 81, no. 3-4 (June 2008): 225–35. http://dx.doi.org/10.1016/j.apcatb.2007.12.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Butova, Vera V., Vladimir A. Polyakov, Elena A. Erofeeva, Sofia A. Efimova, Mikhail A. Soldatov, Alexander L. Trigub, Yury V. Rusalev, and Alexander V. Soldatov. "Synthesis of ZnO Nanoparticles Doped with Cobalt Using Bimetallic ZIFs as Sacrificial Agents." Nanomaterials 10, no. 7 (June 30, 2020): 1275. http://dx.doi.org/10.3390/nano10071275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report here a simple two-stage synthesis of zinc–cobalt oxide nanoparticles. We used Zn/Co-zeolite imidazolate framework (ZIF)-8 materials as precursors for annealing and optional impregnation with a silicon source for the formation of a protective layer on the surface of oxide nanoparticles. Using bimetallic ZIFs allowed us to trace the phase transition of the obtained oxide nanoparticles from wurtzite ZnO to spinel Co3O4 structures. Using (X-ray diffraction) XRD and (X-ray Absorption Near Edge Structure) XANES techniques, we confirmed the incorporation of cobalt ions into the ZnO structure up to 5 mol.% of Co. Simple annealing of Zn/Co-ZIF-8 materials in the air led to the formation of oxide nanoparticles of about 20–30 nm, while additional treatment of ZIFs with silicon source resulted in nanoparticles of about 5–10 nm covered with protective silica layer. We revealed the incorporation of oxygen vacancies in the obtained ZnO nanoparticles using FTIR analysis. All obtained samples were comprehensively characterized, including analysis with a synchrotron radiation source.
24

Shaabani, Ahmad, Zeinab Hezarkhani, and Mina Keramati Nejad. "AuCu and AgCu bimetallic nanoparticles supported on guanidine-modified reduced graphene oxide nanosheets as catalysts in the reduction of nitroarenes: tandem synthesis of benzo[b][1,4]diazepine derivatives." RSC Advances 6, no. 36 (2016): 30247–57. http://dx.doi.org/10.1039/c6ra03132c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hoseini Chopani, Seyede Mahdiye, Shima Asadi, and Majid M. Heravi. "Application of Bimetallic and Trimetallic Nanoparticles Supported on Graphene as novel Heterogeneous Catalysts in the Reduction of Nitroarenes, Homo-coupling, Suzuki-Miyaura and Sonogashira Reactions." Current Organic Chemistry 24, no. 19 (December 1, 2020): 2216–34. http://dx.doi.org/10.2174/1385272824999200914111559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the last decade, the use of heterogeneous catalysts based on Metal Nanoparticles (MNPs) has attracted increasing attention due to their prominence as nanocatalysts in several key chemical transformations. Notably, it is well identified that supporting Metal Nanoparticles (MNPs) with suitable solid surfaces can protect the MNPs from leaching, deactivation, and also increasing its ease of separation and possible reusability. Graphene oxide (GO) as a conductive surface could have non-covalent bonding interactions like hydrogen bonding, electrostatic and π –π* stacking interactions with substrate leading to activation of the substrate. Remarkably, it is recognized that bimetallic nanoparticles supported on graphene oxide often show novel properties that are not present on either of the parent metal or surfaces. In this review, we tried to reveal the potential advantages of bimetallic and trimetallic nanoparticles supported on graphene oxide in organic transformations, including the reduction of nitroarenes, Suzuki-Miyaura and Sonogashira coupling reactions.
26

Islam, Quazi Arif, Rahul Majee, and Sayan Bhattacharyya. "Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis." Journal of Materials Chemistry A 7, no. 33 (2019): 19453–64. http://dx.doi.org/10.1039/c9ta06123a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
B-site cation exsolution in perovskite oxide (ABO3) catalyst to surface decorated bimetallic nanoparticles facilitates the usually arduous trifunctional electrocatalytic activity towards oxygen reduction and water oxidation cum reduction reactions.
27

Censabella, Maria, Francesco Ruffino, Massimo Zimbone, Elena Bruno, and Maria G. Grimaldi. "Self-Organization Based Fabrication of Bimetallic PtPd Nanoparticles on Transparent Conductive Oxide Substrates." physica status solidi (a) 215, no. 3 (November 14, 2017): 1700524. http://dx.doi.org/10.1002/pssa.201700524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Liu, Xi, Marco Conte, Qian He, David W. Knight, Damien M. Murphy, Stuart H. Taylor, Keith Whiston, Christopher J. Kiely, and Graham J. Hutchings. "Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide." Chemistry - A European Journal 23, no. 49 (August 16, 2017): 11834–42. http://dx.doi.org/10.1002/chem.201605941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Chien-Wei, Chin-Lung Cheng, Sung-Wei Huang, Jin-Tsong Jeng, Shiuan-Hua Shiau, and Bau-Tong Dai. "Bimetallic oxide nanoparticles CoxMoyO as charge trapping layer for nonvolatile memory device applications." Applied Physics Letters 91, no. 4 (July 23, 2007): 042107. http://dx.doi.org/10.1063/1.2763962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang, Lei, Tao Wu, Xiaoyang Xu, Fengling Xia, Heya Na, Yu Liu, Haixia Qiu, Wei Wang, and Jianping Gao. "Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability." Journal of Alloys and Compounds 628 (April 2015): 364–71. http://dx.doi.org/10.1016/j.jallcom.2014.11.207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Blomberg, Sara, Niclas Johansson, Esko Kokkonen, Jenny Rissler, Linnéa Kollberg, Calle Preger, Sara M. Franzén, Maria E. Messing, and Christian Hulteberg. "Bimetallic Nanoparticles as a Model System for an Industrial NiMo Catalyst." Materials 12, no. 22 (November 12, 2019): 3727. http://dx.doi.org/10.3390/ma12223727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An in-depth understanding of the reaction mechanism is required for the further development of Mo-based catalysts for biobased feedstocks. However, fundamental studies of industrial catalysts are challenging, and simplified systems are often used without direct comparison to their industrial counterparts. Here, we report on size-selected bimetallic NiMo nanoparticles as a candidate for a model catalyst that is directly compared to the industrial system to evaluate their industrial relevance. Both the nanoparticles and industrial supported NiMo catalysts were characterized using surface- and bulk-sensitive techniques. We found that the active Ni and Mo metals in the industrial catalyst are well dispersed and well mixed on the support, and that the interaction between Ni and Mo promotes the reduction of the Mo oxide. We successfully produced 25 nm NiMo alloyed nanoparticles with a narrow size distribution. Characterization of the nanoparticles showed that they have a metallic core with a native oxide shell with a high potential for use as a model system for fundamental studies of hydrotreating catalysts for biobased feedstocks.
32

Reboul, Julien, Z. Y. Li, Jun Yuan, Kazuki Nakatsuka, Masakazu Saito, Kohsuke Mori, Hiromi Yamashita, Yu Xia, and Catherine Louis. "Synthesis of small Ni-core–Au-shell catalytic nanoparticles on TiO2 by galvanic replacement reaction." Nanoscale Advances 3, no. 3 (2021): 823–35. http://dx.doi.org/10.1039/d0na00617c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Darabdhara, Gitashree, Mohammed A. Amin, Gaber A. M. Mersal, Emad M. Ahmed, Manash R. Das, Mohamed B. Zakaria, Victor Malgras, et al. "Reduced graphene oxide nanosheets decorated with Au, Pd and Au–Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation." Journal of Materials Chemistry A 3, no. 40 (2015): 20254–66. http://dx.doi.org/10.1039/c5ta05730b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Reddy, G. Vishwakshan, P. Raghavendra, B. Ankamwar, P. Sri Chandana, S. M. Senthil Kumar, and L. Subramanyam Sarma. "Ultrafine Pt–Ru bimetallic nanoparticles anchored on reduced graphene oxide sheets as highly active electrocatalysts for methanol oxidation." Materials Chemistry Frontiers 1, no. 4 (2017): 757–66. http://dx.doi.org/10.1039/c6qm00212a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kang, Jianyu, Feng Yan, Chunyan Li, Lihong Qi, Bo Geng, Yue Wang, Chunling Zhu, and Yujin Chen. "NiFe2O4 hollow nanoparticles of small sizes on carbon nanotubes for oxygen evolution." Catalysis Science & Technology 10, no. 20 (2020): 6970–76. http://dx.doi.org/10.1039/d0cy01241f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
CNT-supported Ni–Fe bimetallic oxide hollow nanoparticles with an ultra-small size based on Kirkendall effect are fabricated and this catalyst exhibits excellent OER performances and robust stability, superior to the benchmark IrO2 catalyst.
36

Veera Manohara Reddy, Y., Sravani Bathinapatla, T. Łuczak, M. Osińska, H. Maseed, P. Ragavendra, L. Subramanyam Sarma, V. V. S. S. Srikanth, and G. Madhavi. "An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites." New Journal of Chemistry 42, no. 4 (2018): 3137–46. http://dx.doi.org/10.1039/c7nj04775d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hua, Bin, Meng Li, Yi-Fei Sun, Ya-Qian Zhang, Ning Yan, Jian Chen, Jian Li, Thomas Etsell, Partha Sarkar, and Jing-Li Luo. "Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion." Journal of Materials Chemistry A 4, no. 12 (2016): 4603–9. http://dx.doi.org/10.1039/c6ta00532b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Sultana, Samim, Swapna Devi Mech, Farhaz Liaquat Hussain, Pallab Pahari, Geetika Borah, and Pradip K. Gogoi. "Green synthesis of graphene oxide (GO)-anchored Pd/Cu bimetallic nanoparticles using Ocimum sanctum as bio-reductant: an efficient heterogeneous catalyst for the Sonogashira cross-coupling reaction." RSC Advances 10, no. 39 (2020): 23108–20. http://dx.doi.org/10.1039/d0ra01189d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sahu, Rama Shanker, Kartick Bindumadhavan, and Ruey-an Doong. "Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene." Environmental Science: Nano 4, no. 3 (2017): 565–76. http://dx.doi.org/10.1039/c6en00575f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, a simple chemical reduction method for the synthesis of novel and efficient graphene-based bimetallic Fe/Ni nanoparticles was developed for the rapid and effective dechlorination of trichloroethylene (TCE).
40

Gholinejad, Mohammad, Maedeh Bahrami, Carmen Nájera, and Biji Pullithadathil. "Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction." Journal of Catalysis 363 (July 2018): 81–91. http://dx.doi.org/10.1016/j.jcat.2018.02.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Prechtl, Martin H. G., and Paul S. Campbell. "Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis." Nanotechnology Reviews 2, no. 5 (October 1, 2013): 577–95. http://dx.doi.org/10.1515/ntrev-2013-0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIonic liquids (ILs) are well established as solvents and stabilizing agents for the synthesis of metallic nanoparticles (NPs) in general. The physicochemical properties of ILs and the supramolecular organization in the liquid state are capable of directing the growth of transition metal NPs generated in situ and to subsequently protect and stabilize them. Until now, many different NPs have been successfully synthesized within these media; however, the synthesis of metal oxide and bimetallic alloy or core-shell NPs in ILs is still relatively rare. Herein, we summarize the current state-of-the-art of the synthetic methods for these materials and their application in the broad field of catalysis, including multiphase systems, hydrogenation, dehydrogenation, functionalization, as well as defunctionalization reactions.
42

Gupta, Vinod Kumar, Mehmet Lütfi Yola, Necip Atar, Zafer Üstündağ, and Ali Osman Solak. "Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications." Journal of Molecular Liquids 191 (March 2014): 172–76. http://dx.doi.org/10.1016/j.molliq.2013.12.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lee, Won-June, Young-Kwon Park, Jung-Sik Kim, Byung-Joo Kim, Kay-Hyeok An, Heon Lee, and Sang-Chul Jung. "Preparation and Characterization of Bimetallic Fe–Ni Oxide Nanoparticles Using Liquid Phase Plasma Process." Journal of Nanoscience and Nanotechnology 19, no. 4 (April 1, 2019): 2362–65. http://dx.doi.org/10.1166/jnn.2019.15988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Abbott, H. L., A. Aumer, Y. Lei, C. Asokan, R. J. Meyer, M. Sterrer, S. Shaikhutdinov, and H. J. Freund. "CO Adsorption on Monometallic and Bimetallic Au−Pd Nanoparticles Supported on Oxide Thin Films." Journal of Physical Chemistry C 114, no. 40 (July 19, 2010): 17099–104. http://dx.doi.org/10.1021/jp1038333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Bian, J., M. Xiao, S. J. Wang, Y. X. Lu, and Y. Z. Meng. "Graphite oxide as a novel host material of catalytically active Cu–Ni bimetallic nanoparticles." Catalysis Communications 10, no. 11 (June 2009): 1529–33. http://dx.doi.org/10.1016/j.catcom.2009.04.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhang, Wenyan, and Yang Liu. "DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine." Chemical Research in Chinese Universities 31, no. 3 (May 13, 2015): 406–11. http://dx.doi.org/10.1007/s40242-015-4515-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sahu, Rama Shanker, Dong-Lin Li, and Ruey-an Doong. "Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles." Chemical Engineering Journal 334 (February 2018): 30–40. http://dx.doi.org/10.1016/j.cej.2017.10.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Hsieh, Chien-Te, Po-Yuan Yu, Dong-Ying Tzou, Jo-Pei Hsu, and Ya-Ru Chiu. "Bimetallic Pd–Rh nanoparticles onto reduced graphene oxide nanosheets as electrocatalysts for methanol oxidation." Journal of Electroanalytical Chemistry 761 (January 2016): 28–36. http://dx.doi.org/10.1016/j.jelechem.2015.12.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kumaravel, Jayaraman, Kandhasamy Lalitha, Murugan Arunthirumeni, and Muthugounder Subramanian Shivakumar. "Mycosynthesis of bimetallic zinc oxide and titanium dioxide nanoparticles for control of Spodoptera frugiperda." Pesticide Biochemistry and Physiology 178 (October 2021): 104910. http://dx.doi.org/10.1016/j.pestbp.2021.104910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hao, Yutong, Ying Jiang, Luzi Zhao, Zhengqing Ye, Ziheng Wang, Ditong Chu, Feng Wu, Li Li, Man Xie, and Renjie Chen. "Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage." ACS Applied Materials & Interfaces 13, no. 18 (April 28, 2021): 21127–37. http://dx.doi.org/10.1021/acsami.0c21676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії