Добірка наукової літератури з теми "Biocarbonation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biocarbonation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biocarbonation":

1

Abdel-Gawwad, Hamdy A., Alaa A. Saleh, Pawel Sikora, Mohamed Abd Elrahman, Mona S. Mohammed, Hala S. Hussein, and Essam Nabih Ads. "Biocarbonation: A novel method for synthesizing nano-zinc/zirconium carbonates and oxides." Arabian Journal of Chemistry 13, no. 11 (November 2020): 8092–99. http://dx.doi.org/10.1016/j.arabjc.2020.09.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Martinez Hernandez, Heriberto, Marielle Gueguen Minerbe, Yoan Pechaud, and Thierry Sedran. "Evaluation of the ability of alkalophilic bacteria to form a biofilm on the surface of Portland cement-based mortars." Matériaux & Techniques 108, no. 3 (2020): 304. http://dx.doi.org/10.1051/mattech/2020032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper investigates bacteria colonisation through biofilm formation, based on the premise that biofilm helps bacteria to have a better development. The aim is to homogenize bacterial growth on recycled concrete aggregates (RCA) to obtain a homogeneous precipitation of calcium carbonate (CaCO3). In previous studies, Bacillus halodurans C-125 was selected to perform biocarbonation on RCA to generate a coat of CaCO3 and diminish water absorption. Contrary to expectations, its poor development led to an heterogeneous CaCO3 precipitation, resulting in an inefficient treatment. Within the framework of this criterion the genetic information of B. halodurans C-125 was compared with a homologous specie “Bacillus subtilis str. 168” to know if it possessed the genes to encode Tas A and Tap A proteins. These proteins consolidate a robust biofilm in Bacillus subtilis str. 168, which promotes bacterial development and adhesion to a surface. Remarkably, B. halodurans C-125 lacks the genes to produce Tas A and Tap A. B. halodurans C-125 was also compared with a group of bacteria isolated from RCA to produce biofilm on MSgg media. Curiously, B. halodurans C-125 did not form a robust biofilm while the bacteria isolated from RCA did. Because of the capacity of the isolated bacteria to form biofilm, they were inoculated on a mortar disk with nutrient and MSgg broth. The results showed traces of bacterial development and precipitation of CaCO3 in form of calcite.
3

Briguglio, Antonino, Grazia Vannucci, Clarissa Bruzzone, and Michele Piazza. "Stratigraphic development of a Late Oligocene Reef Complex under strong fluviatile influence in the Tertiary Piedmont Basin (Liguria, NWItaly)." Micropaleontology 67, no. 4 (2021): 315–39. http://dx.doi.org/10.47894/mpal.67.4.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The modern-day decline of coral reefs due to bleaching events has been recognized as one of the major consequences of man-driven climate change. However, also eutrophication has been highlighted as an equally great danger for coral reefs and as such for biodiversity hotspots. In the latest years this phenomenon has moved to the forefront in the scientific community. Fossil reefs play a key role in studying the emergence, development and faunal/floral diversity of reef environments under eutrophic conditions. Their importance as valuable data sources for studying long-term changes of coral reef environments and their resilience cannot be disputed, especially since they may record the complete life cycle of a reef complex. In this study, nine sections nearby the town of Dego (Savona Province, NW Italy) are presented and discussed with regards to their lithostratigraphic and paleontological contents. Due to the extensive amount of data, the original morphology of a fringing reef, consisting of core, flank and fore reef, under strong fluviatile influence could be reconstructed. This study emphasizes the importance of the coralline red algae association in such biocarbonatic build-ups as major constituent and as substrate stabilizers. The sections record the original colonization event of the local basement by the builder community, the emergence of the coral reef and finally the suffocation by the fluviatile sediments. The variation of the red algae association reflects a deepening trend and is possibly correlated to enhanced fluvial input, which tends to deteriorate ecological conditions and functions as a major trigger for initial reef suffocation.
4

Yang, Yang, Shaoqin Ruan, Shifan Wu, Jian Chu, Cise Unluer, Hanlong Liu, and Liang Cheng. "Biocarbonation of reactive magnesia for soil improvement." Acta Geotechnica, October 28, 2020. http://dx.doi.org/10.1007/s11440-020-01093-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biocarbonation":

1

Martinez, Hernandez Heriberto. "Amélioration de granulats de béton recyclé par bioprécipitation." Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les granulats de béton recyclé (GBR) contiennent, de par leur origine, de la pâte de ciment résiduelle qui leur confère une forte porosité et des performances modérées. La porosité conduit à une absorption d’eau forte. C’est une difficulté importante sur le plan industriel car elle complique l’ajustement de l’eau dans les bétons qui permet de maitriser leur ouvrabilité en production. Le processus de fabrication des GBR conduit à avoir plus de pâte dans les particules les plus fines et donc plus d’absorption. En conséquence, si aujourd’hui l’industrie recycle relativement bien les gravillons de GBR dans les bétons, elle utilise peu les sables de GBR, du fait de leur plus grande porosité. Or, lors de la fabrication des GBR, on obtient environ 50 % de sables et 50 % de gravillons. En conséquence, la porosité des sables de GBR est un frein à l’économie circulaire du béton. Un certain nombre de techniques ont été proposées pour éliminer ou améliorer la pâte de ciment résiduelle mais elles posent des problèmes de coût. La carbonatation naturelle des GBR par le CO2 atmosphérique contribue à diminuer leur absorptiond’eau en obstruant leur porosité, mais c’est une réaction qui dure plusieurs mois. Des recherches sont en cours pour faire de la carbonatation accélérée (en concentrant le CO2 par exemple) à l’échelle industrielle.Le présent travail explore une idée alternative quiconsiste à former en quelques jours, à l’aide debactéries biocalcifiantes, une gangue de CaCO3 autourdes GBR et surtout de la partie sableuse, afin de limiterl’accès de l’eau à leur porosité.Dans un premier temps,des bactéries candidates non pathogènes ont étéidentifiées, sélectionnées, adaptées au milieu alcalin desGBR, puis nous avons vérifié leur aptitude à produire duCaCO3. Dans un second temps, nous avons déterminéles conditions qui favorisent une croissance des bactéries et une production de CaCO3 homogènes sur la surface de milieux gélosés modèles. L’homogénéité est en effet une condition sine qua non pour obtenir une bonne étanchéité à l’eau. Nous avons ainsi confirmé l’intérêt de sélectionner des bactéries capables de produire du biofilm. Enfin, les procédés développés ont été appliqués à des disques de mortier modèles facilitant les observations visuelles. Les résultats préliminaires confirment qu’il est possible de faire baisser l’absorption de ces mortiers de façon notable à l’échéance d’un mois. Des travaux supplémentaires sont nécessaires pour confirmer ces résultats encourageants sur sable de GBR
Recycled concrete aggregates (RCA) contain, due to their origin, residual cement paste which gives them high porosity and moderate performance. The porosity leads to a strong water absorption. This is a major difficulty on the industrial level because it complicates the adjustment of water in concrete batches, which allows to control their workability in production. The RCA manufacturing process results in having more paste in the finer particles and therefore more absorption. As a result, while the industry today recycles coarse RCA into concrete relatively well, it uses small amounts of RCA sand because of their greater porosity. Yet, during the manufacture of RCA, about 50% sand and 50% coarse aggregates are obtained. Consequently, the porosity of RCA sand hinders the circular economy of concrete. A number of techniques have been proposed for removing or improving the residual cement paste, but they are expensive. The natural carbonation of RCA by atmospheric CO2 helps with decreasing their water absorption by obstructing their porosity, but this is a several month reaction. Research is ongoing to make accelerated carbonation (by concentrating CO2, for example) on an industrial scale. The present work explores an alternative idea, which consists in forming in a few days, using biocalcifying bacteria, a matrix of CaCO3 around the RCA and especially the sand part, in order to limit the access of water to their porosity. First, candidate non-pathogenic bacteria were identified, selected, adapted to the alkaline medium of RCA, then we checked their ability to produce CaCO3. In a second step, we detemined the conditions, which favor uniform bacterial colonization and production of CaCO3 on the surface of model agar media. Homogeneity is indeed mandatory to obtain good water tightness. We thus confirmed the value of selecting bacteria capable of producing biofilm. Finally, the methods developed were applied to model mortar disks facilitating visual observations. Preliminary results confirm that it is possible to significantly lower the absorption of these mortars within one month. Further work is needed to confirm these encouraging results on sand part of RCA

До бібліографії