Статті в журналах з теми "Biochemicol analysis"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Biochemicol analysis.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Biochemicol analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Haziraka, Abinash, Chandana M.S., and Karan Sehgal. "Biochemical Analysis of Gallstones in Patients with Calculus Cholecystitis." New Indian Journal of Surgery 8, no. 3 (2017): 319–25. http://dx.doi.org/10.21088/nijs.0976.4747.8317.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Varghese, Sanoj, Ambili Reveendran, V. senthil Kumar, Karthikeyan Tm, and Venkiteshan Ranganathan. "MICRO RAMAN SPECTROSCOPIC ANALYSIS ON BLOOD SERUM SAMPLES OF DUCTAL CARCINOMA PATIENTS." Asian Journal of Pharmaceutical and Clinical Research 11, no. 9 (September 7, 2018): 176. http://dx.doi.org/10.22159/ajpcr.2018.v11i9.26806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objective: Identification of biochemical changes in ductal cancer patient’s serum samples using micro Raman spectroscopy.Methods: Micro Raman spectroscopy was used for the identification of Raman shift bands. Data analysis was done using K-means clustering.Results: Micro Raman spectroscopic analysis of human breast cancer patient’s serum samples was done. Biochemicals present in the samples were identified from the peak evaluations. K-means clustering analysis was used to differentiate the biochemicals present in the samples.Conclusion: From the study, we conclude that Raman spectroscopy has the potential to differentiate the biochemical changes occurring in the human body, and the differentiation can be done using K-means clustering.
3

Aytasheva, Z. G., B. A. Zhumabayeva, L. P. Lebedeva, O. A. Sapko, S. K. Baiseyitova, Zh Baqytbek, E. D. Dzhangalina, and A. Sh Utarbayeva. "Morphogenetic and biochemical analysis of domestic and external common bean seeds." International Journal of Biology and Chemistry 7, no. 2 (2014): 16–24. http://dx.doi.org/10.26577/2218-7979-2014-7-2-16-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Manika Das, Manika Das, Sumer Singh, and Bhaben Tanti. "Biochemical Analysis of Paper Mill Effluent & Microbial Degradation of Phenol." International Journal of Scientific Research 2, no. 4 (June 1, 2012): 73–76. http://dx.doi.org/10.15373/22778179/apr2013/58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nishimura, Keigo, Minghao Nie, Shigenori Miura, and Shoji Takeuchi. "Microfluidic Device for the Analysis of Angiogenic Sprouting under Bidirectional Biochemical Gradients." Micromachines 11, no. 12 (November 27, 2020): 1049. http://dx.doi.org/10.3390/mi11121049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we developed a spheroid culture device that can trap a spheroid in the trapping site sandwiched by two extracellular matrix gels located at the upper and lower side of the spheroid. This device can form different biochemical gradients by applying target biochemicals separately in upper and lower channels, allowing us to study the angiogenic sprouting under various biochemical gradients in different directions. In the experiments, we confirmed the trapping of the spheroids and demonstrate the investigation on the direction and extent of angiogenic sprouts under unidirectional or bidirectional biochemical gradients. We believe our device can contribute to understanding the pathophysiological phenomena driven by chemical gradients, such as tissue development and tumor angiogenesis.
6

Narasinga Rao V, Narasinga Rao V., and DSVGK Kaladhar DSVGK Kaladhar. "Biochemical and Phytochemical Analysis of The Medicinal Plant, Kaempferia Galanga Rhizome Extracts." International Journal of Scientific Research 3, no. 1 (June 1, 2012): 18–20. http://dx.doi.org/10.15373/22778179/jan2014/6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Poronnik, О. О. "OBTAINING OF PLANT TISSUE CULTURE Scutellaria baicalensis GEORGI. AND ITS BIOCHEMICAL ANALYSIS." Biotechnologia Acta 14, no. 6 (December 2021): 53–58. http://dx.doi.org/10.15407/biotech14.06.0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aim. To obtain a plant tissue culture of S. baicalensis as a possible source of biologically active compounds (BAC) with a wide range of pharmacological action. Methods. Plant tissue culture, photocolorimetric method, reversed-phase high performance liquid chromatography (HPLC) method. Results. Two stably productive plant tissue culture strains (16SB3 and 20SB4) of S. baicalensis were obtained from fragments of roots seedling on a specially developed agar nutrient medium 5С01. The yield of dry biomass from 1 liter of this medium per passage (21st day of growth) for strain 16SB3 is 25–30 g, for strain 20SB4 – 30–40 g. The total content of flavonoids in dry biomass was in terms of routine for strains 16SB3 and 20SB4 – 0.6–0.9 and 0.7–0.9 mg/g, respectively, and the yield of flavonoids – 18–27 and 21–36 mg/l of nutrient medium, respectively. BAC typical for plants in nature, in particular, flavonoids vogonin, baikalein, neobaikalein, skulkapfavon and their derivatives, were found in the studied biomass of both strains. Conclusions. It was found that the biomass of the two strains of S. baicalensis plant tissue culture accumulated the same BAC, in particular, flavonoids, as do plants in natural conditions. The resulting plant tissue culture is promising as a possible source of Baikal skullcap BAC.
8

Shashidharan, A., та S. N. Plomindas. "Биохимический анализ некоторых морских макроводорослей побережья Коллама (Индия)". Algologia 27, № 2 (30 червня 2017): 129–44. http://dx.doi.org/10.15407/alg27.02.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rout, G. R., and P. Das. "Rapid hydroponic screening for molybdenum tolerance in rice through morphological and biochemical analysis." Plant, Soil and Environment 48, No. 11 (December 22, 2011): 505–12. http://dx.doi.org/10.17221/4404-pse.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High yielding varieties of rice (Oryza sativa) cultivars were tested for their tolerance to different levels of molybdenum (Mo) (0.1&micro;M &ndash; control, 0.2, 0.4, 0.8 and 1.6&micro;M) in nutrient solution at pH 6.8. Seeds of rice were germinated and grown in presence of molybdenum under controlled environmental conditions. Standard growth parameters such as root length, shoot length, root/shoot dry biomass and root/shoot tolerance index were tested as markers of molybdenum toxicity. Measurements as early as 48 hours after the germination did not yield consistent results. However, root measurement on 3<sup>rd</sup>, 6<sup>th</sup>&nbsp;and 9<sup>th</sup>&nbsp;day after root emergence showed significant differences among cultivars of rice. Rice cultivars Annapurna, Kusuma, Deepa and Vaghari developed better root system while, Paridhan-1, Pusa-2-21 and Ratna showed poor growth of the roots in presence (0.8&micro;M) of molybdenum. The root tolerance index (RTI) and the shoot tolerance index (STI) in Annapurna, Kusuma and Deepa in rice were high indicating their tolerance to molybdenum; Paridhan-1 and Ratna, however, showed low RTI and STI. Based on the growth parameters, twenty cultivars of rice were ranked in respect of their tolerance to molybdenum: Annapurrna &gt; Deepa &gt; Kusuma &gt; Vaghari &gt; Hamsa &gt; Vikram &gt; Bharati &gt; Paridhan-2 &gt; Aswathi &gt; Subhadra &gt; Sankar &gt; Sakti &gt; Nilgiri &gt; Rudra &gt; Hema &gt; Pragati &gt; Pusa-2-21 &gt; Ratna &gt; Paridhan-1, respectively. Molybdenum toxicity was correlated with increased peroxidase and catalase activity in different cultivars of rice. This method can be employed for quick screening of rice cultivars for molybdenum tolerance in breeding programmes.
10

Sansom, Clare. "Biochemical image analysis." Biochemist 36, no. 2 (April 1, 2014): 40–41. http://dx.doi.org/10.1042/bio03602040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chatenay-Rivauday, Christian, Z. Petek Cakar, Paul Jenö, Elena S. Kuzmenko, and Klaus Fiedler. "Caveolae: biochemical analysis." Molecular Biology Reports 31, no. 2 (June 2004): 67–84. http://dx.doi.org/10.1023/b:mole.0000031352.51910.e9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Krishna, Mani, Sheetal G. Gole, and Gautam N. Gole. "Spontaneous Bacterial Peritonitis: Diagnostic Importance of Ascitic Fluid Polymorphonuclear Cell Count, Biochemical and Microbiological Analysis." Indian Journal of Pathology: Research and Practice 6, no. 3 (part-1) (2017): 640–45. http://dx.doi.org/10.21088/ijprp.2278.148x.6317.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Roux, P., and H. Buc. "Methods of biochemical analysis." Biochimie 76, no. 5 (January 1994): 457. http://dx.doi.org/10.1016/0300-9084(94)90128-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Shinoda, Tomotaka, Tatsuyuki Takenawa, and Yoshie Kametani. "Biochemical analysis of amyloid." Clinics in Dermatology 8, no. 2 (April 1990): 87–101. http://dx.doi.org/10.1016/0738-081x(90)90092-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kelly, Ryan T., and Ying Zhu. "Ultrasmall sample biochemical analysis." Analytical and Bioanalytical Chemistry 411, no. 21 (June 13, 2019): 5349–50. http://dx.doi.org/10.1007/s00216-019-01957-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Poljak, R. J. "Methods in biochemical analysis." Biochimie 73, no. 9 (September 1991): 1257–58. http://dx.doi.org/10.1016/0300-9084(91)90019-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Raj, Dr Ujjwal, Dr Ashok Kumar, and Dr Vishal Mandial. "Biochemical analysis of gallstones." International Journal of Surgery Science 6, no. 1 (January 1, 2022): 219–25. http://dx.doi.org/10.33545/surgery.2022.v6.i1d.854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kennedy, Adam D., Lisa Ford, Bryan Wittmann, Jesse Conner, Jacob Wulff, Matthew Mitchell, Anne M. Evans, and Douglas R. Toal. "Global biochemical analysis of plasma, serum and whole blood collected using various anticoagulant additives." PLOS ONE 16, no. 4 (April 8, 2021): e0249797. http://dx.doi.org/10.1371/journal.pone.0249797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction Analysis of blood for the evaluation of clinically relevant biomarkers requires precise collection and sample handling by phlebotomists and laboratory staff. An important consideration for the clinical application of metabolomics are the different anticoagulants utilized for sample collection. Most studies that have characterized differences in metabolite levels in various blood collection tubes have focused on single analytes. We define analyte levels on a global metabolomics platform following blood sampling using five different, but commonly used, clinical laboratory blood collection tubes (i.e., plasma anticoagulated with either EDTA, lithium heparin or sodium citrate, along with no additive (serum), and EDTA anticoagulated whole blood). Methods Using an untargeted metabolomics platform we analyzed five sample types after all had been collected and stored at -80°C. The biochemical composition was determined and differences between the samples established using matched-pair t-tests. Results We identified 1,117 biochemicals across all samples and detected a mean of 1,036 in the sample groups. Compared to the levels of metabolites in EDTA plasma, the number of biochemicals present at statistically significant different levels (p<0.05) ranged from 452 (serum) to 917 (whole blood). Several metabolites linked to screening assays for rare diseases including acylcarnitines, bilirubin and heme metabolites, nucleosides, and redox balance metabolites varied significantly across the sample collection types. Conclusions Our study highlights the widespread effects and importance of using consistent additives for assessing small molecule levels in clinical metabolomics. The biochemistry that occurs during the blood collection process creates a reproducible signal that can identify specimens collected with different anticoagulants in metabolomic studies. Impact statement In this manuscript, normal/healthy donors had peripheral blood collected using multiple anticoagulants as well as serum during a fasted blood draw. Global metabolomics is a new technology being utilized to draw clinical conclusions and we interrogated the effects of different anticoagulants on the levels of biochemicals from each of the donors. Characterizing the effects of the anticoagulants on biochemical levels will help researchers leverage the information using global metabolomics in order to make conclusions regarding important disease biomarkers.
19

Kumar, R. Suresh, and P. Ganesh P. Ganesh. "Biochemical Analysis of Groundnut VRI- 2 (Arachis Hypogaea) Cultivated Under the Influence of Different Coir Compost Mixture." International Journal of Scientific Research 2, no. 3 (June 1, 2012): 334–35. http://dx.doi.org/10.15373/22778179/mar2013/104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

S. Elumalai, S. Elumalai, G. Jegan G. Jegan, G. K. Saravanan G. K. Saravanan, T. Sangeetha T. Sangeetha, and D. Roop singh D. Roop singh. "Studies on Growth and Biochemical Analysis of Three Microalgal Strains on Different Molar Concentration of Sodium Bicarbonate." Indian Journal of Applied Research 4, no. 1 (October 1, 2011): 60–62. http://dx.doi.org/10.15373/2249555x/jan2014/19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Javed, Zoya, Shailendra Kumar Srivastva, and Gyan Datta Tripathi. "Biochemical Analysis of Ash Guard Peel Optimization for a Noble Substrate for the Growth of Bacillus Subtilis." Indian Journal of Applied Research 4, no. 1 (October 1, 2011): 63–64. http://dx.doi.org/10.15373/2249555x/jan2014/20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Nozdrenko, D. M., K. I. Bogutska, I. V. Pampuha, O. O. Gonchar, O. M. Abramchuk, and Yu I. Prylutskyy. "Biochemical and tensometric analysis of C(60) fullerenes protective effect on the development of skeletal muscle fatigue." Ukrainian Biochemical Journal 93, no. 4 (September 13, 2021): 93–102. http://dx.doi.org/10.15407/ubj93.04.093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sun, Yonghui, Zhinong Wei, and Guoqiang Sun. "Positive Stability Analysis and Bio-Circuit Design for Nonlinear Biochemical Networks." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/717489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper is concerned with positive stability analysis and bio-circuits design for nonlinear biochemical networks. A fuzzy interpolation approach is employed to approximate nonlinear biochemical networks. Based on the Lyapunov stability theory, sufficient conditions are developed to guarantee the equilibrium points of nonlinear biochemical networks to be positive and asymptotically stable. In addition, a constrained bio-circuits design with positive control input is also considered. It is shown that the conditions can be formulated as a solution to a convex optimization problem, which can be easily facilitated by using the Matlab LMI control toolbox. Finally, a real biochemical network model is provided to illustrate the effectiveness and validity of the obtained results.
24

Bressloff, Paul C., and James N. MacLaurin. "Phase Reduction of Stochastic Biochemical Oscillators." SIAM Journal on Applied Dynamical Systems 19, no. 1 (January 2020): 151–80. http://dx.doi.org/10.1137/18m1221205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

IWATANI, Shouichi, Haruo FUKUSHIMA, Masao OOSUMI, Minoru TANAKA, Toshiaki HIRASAWA, Yasuji NISHIDA, and Yukio NAGAMACHI. "BIOCHEMICAL ANALYSIS IN GASTROINTESTINAL HEMORRHAGE." Journal of the Japanese Practical Surgeon Society 50, no. 11 (1989): 2308–12. http://dx.doi.org/10.3919/ringe1963.50.2308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Choi, Dongmi, Myungsoo Kim, and Jongsei Park. "Erythropoietin: physico- and biochemical analysis." Journal of Chromatography B: Biomedical Sciences and Applications 687, no. 1 (December 1996): 189–99. http://dx.doi.org/10.1016/s0378-4347(96)00308-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Grayhack, Elizabeth J., and Eric M. Phizicky. "Genomic analysis of biochemical function." Current Opinion in Chemical Biology 5, no. 1 (February 2001): 34–39. http://dx.doi.org/10.1016/s1367-5931(00)00169-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Yee, Gaylin M., Nadim I. Maluf, Paul A. Hing, Michael Albin, and Gregory T. A. Kovacs. "Miniature spectrometers for biochemical analysis." Sensors and Actuators A: Physical 58, no. 1 (January 1997): 61–66. http://dx.doi.org/10.1016/s0924-4247(97)80225-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wu, Jing, Ziyi He, Qiushui Chen, and Jin-Ming Lin. "Biochemical analysis on microfluidic chips." TrAC Trends in Analytical Chemistry 80 (June 2016): 213–31. http://dx.doi.org/10.1016/j.trac.2016.03.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Galloway, D. R., R. C. Hedstrom, J. L. McGowan, S. P. Kessler, and D. J. Wozniak. "Biochemical Analysis of CRM 66." Journal of Biological Chemistry 264, no. 25 (September 1989): 14869–73. http://dx.doi.org/10.1016/s0021-9258(18)63782-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yokoyama, Atsushi, Shogo Katsura, and Akira Sugawara. "Biochemical Analysis of Histone Succinylation." Biochemistry Research International 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/8529404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Posttranslational modification (PTM) of proteins is used to regulate protein activity and stability. Histone PTMs are regarded as some of the most important, as they can directly regulate gene expression through chromatin reorganization. Recently, histone proteins were found to undergo succinylation, adding to other well-known PTMs such as acetylation, methylation, and phosphorylation. However, there is little information regarding the enzyme which catalyzes histone lysine succinylation. In fact, it is unclear whether this reaction is enzymatic. In this study, we tested histone succinylation activity in vitro using cell nuclear extracts of HepG2 cells. Although whole nuclear extracts did not show histone succinylation activity, we found that an SP 1.0 M KCl fraction of nuclear extracts indeed had such activity. These data offer the first direct evidence that histone succinylation is an enzymatic PTM as are other histone codes in the nucleus.
32

Masuda-Sasa, T. "Biochemical analysis of human Dna2." Nucleic Acids Research 34, no. 6 (March 23, 2006): 1865–75. http://dx.doi.org/10.1093/nar/gkl070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Niemann, A., W. Schmidt, W. Czysz, F. Jancik, K. Söllner, and J. Eliassaf. "3 Biochemical and clinical analysis." Fresenius' Zeitschrift für analytische Chemie 335, no. 1 (January 1989): 162–74. http://dx.doi.org/10.1007/bf00482412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Bilitewski, Ursula, Meike Genrich, Sabine Kadow, and Gaber Mersal. "Biochemical analysis with microfluidic systems." Analytical and Bioanalytical Chemistry 377, no. 3 (October 1, 2003): 556–69. http://dx.doi.org/10.1007/s00216-003-2179-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kim, Ahhyun, Katrina Montales, Kenna Ruis, Holly Senebandith, Hovik Gasparyan, Quinn Cowan, and W. Matthew Michael. "Biochemical analysis of TOPBP1 oligomerization." DNA Repair 96 (December 2020): 102973. http://dx.doi.org/10.1016/j.dnarep.2020.102973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Czysz, W., F. T. Bartsch, M. J. Rittich, J. Eliassef, K. Söllner, B. R. Glutz, R. H. S., and W. H. Mennicke. "3 Biochemical and clinical analysis." Fresenius' Zeitschrift für analytische Chemie 332, no. 4 (January 1988): 412. http://dx.doi.org/10.1007/bf00468834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Jan-Willem Van Klinken, B., Alexandra W. C. Einerhand, Hans A. Büller, and Jan Dekker. "Strategic Biochemical Analysis of Mucins." Analytical Biochemistry 265, no. 1 (December 1998): 103–16. http://dx.doi.org/10.1006/abio.1998.2896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Troják, Matej, David Šafránek, Lukrécia Mertová, and Luboš Brim. "Executable biochemical space for specification and analysis of biochemical systems." PLOS ONE 15, no. 9 (September 11, 2020): e0238838. http://dx.doi.org/10.1371/journal.pone.0238838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Troják, Matej, David Šafránek, Luboš Brim, Jakub Šalagovič, and Jan Červený. "Executable Biochemical Space for Specification and Analysis of Biochemical Systems." Electronic Notes in Theoretical Computer Science 350 (September 2020): 91–116. http://dx.doi.org/10.1016/j.entcs.2020.06.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Glick, David. "Methods of biochemical analysis, vol. 33." Analytica Chimica Acta 219 (1989): 361. http://dx.doi.org/10.1016/s0003-2670(00)80377-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Glick, D. "Methods of biochemical analysis, vol. 32." Analytica Chimica Acta 199 (1987): 283. http://dx.doi.org/10.1016/s0003-2670(00)82848-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Culouscou, J. M., G. W. Carlton, and M. Shoyab. "Biochemical analysis of the epithelin receptor." Journal of Biological Chemistry 268, no. 14 (May 1993): 10458–62. http://dx.doi.org/10.1016/s0021-9258(18)82221-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Berweger, Christian D., Florian Müller-Plathe, Edgar Hänseler, and Herbert Keller. "Estimating imprecision profiles in biochemical analysis." Clinica Chimica Acta 277, no. 2 (October 1998): 107–25. http://dx.doi.org/10.1016/s0009-8981(98)00093-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kim, J., D. G. Bates, I. Postlethwaite, L. Ma, and P. A. Iglesias. "Robustness analysis of biochemical network models." IEE Proceedings - Systems Biology 153, no. 3 (2006): 96. http://dx.doi.org/10.1049/ip-syb:20050024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wilkins, Robert J. "AUTOMATED ANALYSIS AND BIOCHEMICAL PROFILE TESTING." Bulletin of the American Society of Veterinary Clinical Pathologists 4, no. 1 (February 23, 2009): 19. http://dx.doi.org/10.1111/j.1939-165x.1975.tb00913.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Sanchez, Jean-Frederic, Julien Lescar, Valérie Chazalet, Aymeric Audfray, Jean Gagnon, Richard Alvarez, Christelle Breton, Anne Imberty, and Edward P. Mitchell. "Biochemical and Structural Analysis ofHelix pomatiaAgglutinin." Journal of Biological Chemistry 281, no. 29 (May 16, 2006): 20171–80. http://dx.doi.org/10.1074/jbc.m603452200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bandodkar, Amay J., William J. Jeang, Roozbeh Ghaffari, and John A. Rogers. "Wearable Sensors for Biochemical Sweat Analysis." Annual Review of Analytical Chemistry 12, no. 1 (June 12, 2019): 1–22. http://dx.doi.org/10.1146/annurev-anchem-061318-114910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.
48

Wiatr, Agnieszka, Jacek Składzień, Katarzyna Świeży, and Maciej Wiatr. "A Biochemical Analysis of the Stapes." Medical Science Monitor 25 (April 12, 2019): 2679–86. http://dx.doi.org/10.12659/msm.913635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Drexler, H. G., G. Gaedicke, and J. Minowada. "Biochemical enzyme analysis in acute leukaemia." Journal of Clinical Pathology 38, no. 2 (February 1, 1985): 117–27. http://dx.doi.org/10.1136/jcp.38.2.117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Doner, F. "The biochemical analysis of tympanosclerotic plaques." Otolaryngology - Head and Neck Surgery 128, no. 5 (May 2003): 742–45. http://dx.doi.org/10.1016/s0194-5998(03)00122-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії