Добірка наукової літератури з теми "Biofuel of third generation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biofuel of third generation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biofuel of third generation"

1

Alam, Firoz, Saleh Mobin, and Harun Chowdhury. "Third Generation Biofuel from Algae." Procedia Engineering 105 (2015): 763–68. http://dx.doi.org/10.1016/j.proeng.2015.05.068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Blinová, Lenka, Alica Bartošová, and Maroš Sirotiak. "Unconventional Type of Biomass Suitable for the Production of Biofuels." Advanced Materials Research 860-863 (December 2013): 514–17. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.514.

Повний текст джерела
Анотація:
Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means for environmental and economic sustainability. Biofuels are divided into four generations. At present microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate and they also do not compete with food or feed crops, and can be produced on non-arable land. Microalgae have broad bioenergy potential because they can be used to produce liquid transportation and heating fuels (bioethanol, biodiesel). In this paper we present an overview about biofuels generation, especially about using duckweed for bioethanol production.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Epplin, Francis M., and Mohua Haque. "Policies to Facilitate Conversion of Millions of Acres to the Production of Biofuel Feedstock." Journal of Agricultural and Applied Economics 43, no. 3 (2011): 385–98. http://dx.doi.org/10.1017/s1074070800004387.

Повний текст джерела
Анотація:
First-generation grain ethanol biofuel has affected the historical excess capacity problem in U.S. agriculture. Second-generation cellulosic ethanol biofuel has had difficulty achieving cost-competitiveness. Third-generation drop-in biofuels are under development. If lignocellulosic biomass from perennial grasses becomes the feedstock of choice for second- and third-generation biorefineries, an integrated system could evolve in which a biorefinery directly manages feedstock production, harvest, storage, and delivery. Modeling was conducted to determine the potential economic benefits from an integrated system. Relatively low-cost public policies that could be implemented to facilitate economic efficiency are proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Lian Dong, Erkki Hiltunen, and Josu Takala. "Microalgal Biofuels Beat the First and Second Generation Biofuels." Applied Mechanics and Materials 197 (September 2012): 760–63. http://dx.doi.org/10.4028/www.scientific.net/amm.197.760.

Повний текст джерела
Анотація:
Recently biofuels derived from biomass have received increased concerns in an attempt to search for sustainable development. The first and second generation biofuels are unsustainable since the growth of these food or non-food crops for biofuel generation will compete for limited arable farmlands, thus increasing the risks on food availability. Microalgal biofuels, known as the third generation biofuels, have the potential for sustainable production in an economically effective manner. The advantages of microalgae as a biofuel feedstock are many, for instance, high photosynthesis efficiency, high oil content and noncompetition with food crop production on farmlands. Microalgae can be employed for the production of biodiesel, bioethanol, biogas, biohydrogen, among others. The integrated biorefinery approach has huge potential to greatly improve the economics of biofuel production from microalgae. However, the production of microalgal biofuels is still at pre-commercial stages since it is expensive to produce substantial amount of biofuels at a large scale. Despite this, microalgae are still the most promising and best feedstock available for the biofuels. Biotechnology advances including genetic and metabolic engineering, well-funded R&D researches and policy support can make microalgal biofuels have a bright future.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SHEVCHUK, Hanna. "BIOFUELS FROM ALGAE AS A DIRECTION FOR THE DEVELOPMENT OF THE «GREEN» ECONOMY: THE CURRENT STATE AND PROSPECTS." 3, no. 3(57) (September 28, 2021): 21–36. http://dx.doi.org/10.37128/2411-4413-2021-3-2.

Повний текст джерела
Анотація:
The article describes environmental aspects of the impact of traditional energy sources on the environment. It is substantiated that energy needs and environmental problems lead to the search for alternative renewable fuels. A comparative analysis of the structure of general supply between traditional and alternative energy sources is done. The current state of production and use of traditional fuels and prospects for the production of biofuels in Ukraine are analyzed. The projected structure of the use of traditional and alternative fuels according to the Energy Strategy of Ukraine until 2035 «Safety, energy efficiency, competitiveness» is presented. The classification of biofuels is provided depending on raw materials: first, second and third generation. Unlike biofuels from crops such as sugar cane and corn (first-generation biofuels), as well as animal and vegetable wastes (second-generation), algae-derived fuels (third-generation biofuels) have many benefits. In particular, this is a greater potential for biofuel production compared to previous systems: a variety of possible fuels (biodiesel, bioethanol, biobutanol, biogas and even jet fuel); flexible production technologies. Algae cultivation technologies have been studied: especially cultivation in open reservoirs or in more advanced closed ponds and bioreactors. It is substantiated that algae are most often used for biodiesel production; a comparison of different technologies for its production is made. The foreign experience of algae biofuel production and its usage by various automobile companies and enterprises, as well as the prospects of algae biofuel production in Ukraine are presented. Despite the prospects for the production of the third-generation biofuels, there we think, that the issue of investigation has been not been studied properly by scientists and Ukrainian producers don’t have basic knowledge.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blinová, Lenka, Alica Bartošová, and Kristína Gerulová. "Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production." Research Papers Faculty of Materials Science and Technology Slovak University of Technology 23, no. 36 (2015): 87–95. http://dx.doi.org/10.1515/rput-2015-0010.

Повний текст джерела
Анотація:
Abstract Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Valdemaras, Makutenas, Miceikiene Astrida, Svetlanska Tatiana, Turcekova Natalia, and Sauciunas Tadas. "The impact of biofuels production development in the European Union." Agricultural Economics (Zemědělská ekonomika) 64, No. 4 (2018): 170–85. http://dx.doi.org/10.17221/285/2016-agricecon.

Повний текст джерела
Анотація:
The article analyses the effects of the development of biofuel production in the EU (European Union) countries. For this purpose, the authors develop and adapt methodology to determine biofuel production effects considering resource prices, the areas of distribution and employment in the EU. Twenty-seven EU member states are selected for empirical research. Over 98% of production is devoted to first-generation biofuels; therefore, second- and third-generation biofuels are not analysed. The empirical study is carried out by analysing the dynamics of quantitative indicators, and we assess changes in direction by setting the values of qualitative indicators. Quantitative and qualitative indicators are calculated using correlation analysis. The results suggest that the fastest growth of ethanol production in the EU took place in Finland, Ireland and the Netherlands. During the analysed period, Germany and France were the largest producers of ethanol and biodiesel. The regression analysis showed a very strong correlation between the number of jobs created and biofuel production. There is also a very strong correlation between the volume of production of biofuels and land used for biofuel feedstock production. The production of biofuel does not significantly affect food and feed crop prices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Preradović, Milica, and Saša Papuga. "Third generation biofuels: Cultivation methods and technologies for processing of microalgal biofuels." Zastita materijala 62, no. 4 (2021): 249–61. http://dx.doi.org/10.5937/zasmat2104249p.

Повний текст джерела
Анотація:
Energy production from biomass is gaining a lot of attention. Algal oil (microand macroalgae) can be used for biofuel production. Biofuels from this type of feedstock are called third generation biofuels or advanced biofuels. Focus of this paper is on the microalgal biofuels and on the available process technologies. Very important advantage of microalgal biofuels is that microalgae can be cultivated on any type of land, with the possibility of using wastewater streams. Microalgae can be cultivated in open systems, so called "raceway ponds" or in closed systems - photobioreactors: flat panel photobioreactors, horizontal tubular, vertical tubular photobioreactors with or without airlift. Also, basic information on cultivation conditions (photoautotrophic, heterotrophic, mixotrophic and photoheterotrophic) are presented. Available technologies for microalgal biofuels production are: transesterification, fermentation, pyrolysis, hydrothermal liquefaction, anaerobic digestion and biomass to liquids (BtL). Additionally, basic information on life cycle assessment of microalgae cultivation and CO2 sequestration potential is given in the final chapter of this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Naik, Aishwarya N., Mrinalini Singh, and Yasrib Qurishi. "Algal biofuel: A promising perspective." Annals of Plant Sciences 7, no. 5 (2018): 2262. http://dx.doi.org/10.21746/aps.2018.7.5.10.

Повний текст джерела
Анотація:
The depleting energy resources and rising environmental issues have led to significant research in the field of producing fuel using alternative means. Biofuel can serve as better means to cope up with the depleting fossil and petroleum fuels. The novel properties of algae have set them as the best among all other biomasses and as a better alternative to the energy crisis. Algal biofuels are grouped under “Third generation biofuels” which has gained significant attention recently. Combustion of fossil and petroleum fuel releases sulphur dioxide in the air causing air pollution and acid rain. Most of the research on algal biofuel is done using microalgae which have high oil content along with faster growth rate. The potential of algae for producing biofuel can be improved by obtaining more efficient methods and by overcoming its certain limitations. The present review highlights the advantages, various types and production of algal biofuel.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saad, Marwa G., Noura S. Dosoky, Mohamed S. Zoromba, and Hesham M. Shafik. "Algal Biofuels: Current Status and Key Challenges." Energies 12, no. 10 (2019): 1920. http://dx.doi.org/10.3390/en12101920.

Повний текст джерела
Анотація:
The current fossil fuel reserves are not sufficient to meet the increasing demand and very soon will become exhausted. Pollution, global warming, and inflated oil prices have led the quest for renewable energy sources. Algal biofuels represent a potential source of renewable energy. Algae, as the third generation feedstock, are suitable for biodiesel and bioethanol production due to their quick growth, excellent biomass yield, and high lipid and carbohydrate contents. With their huge potential, algae are expected to surpass the first and second generation feedstocks. Only a few thousand algal species have been investigated as possible biofuel sources, and none of them was ideal. This review summarizes the current status of algal biofuels, important steps of algal biofuel production, and the major commercial production challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Biofuel of third generation"

1

Inglesby, Alister Edward. "Biochemical and bioelectrochemical technology for third generation biofuel production." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Yue. "Microalgae as the Third Generation Biofuel:Production, Usage, Challenges and Prospects." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210995.

Повний текст джерела
Анотація:
Microalgae refer to a kind of autotrophic microorganism with rich nutrition and high photosynthetic utilization degree, which are widely living in the sea and land. Microalgae can be converted into bio energy such as biogas, biodiesel and bio oil. This thesis presents a review on the different cultivation methods and energy conversion techniques of microalgae. Through comparison with other biomass feedstocks, the advantages and disadvantages of microalgae are detailed. Since the large scale of microalgae bioenergy production has not been achieved yet, the commercial production requirements and the sustainability of microalgae are analysed. As a result, high lipid content, less cultivated land use and short life time circle are thought to be the typical advantages of microalgae that it can be considered as a potential substitute of fossil fuel.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Онопа, Валерія Василівна. "Evaluation of the efficiency of biofuel production from microalgae." Thesis, Національний авіаційний університет, 2020. https://er.nau.edu.ua/handle/NAU/49685.

Повний текст джерела
Анотація:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат у 2019-2020 навчальному році". Керівник роботи: доцент кафедри екології, к.т.н., Павлюх Леся Іванівна<br>Object of research biofuel production. Subject – assessment of microalgae application for biofuel production. Aim оf work – To determine the appropriateness of microalgae application for biofuels production. Methods of research: analysis, data comparison, statistical data processing, mathematical modelling.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Онопа, Валерія Василівна. "Evaluation of the efficiency of biofuel production from microalgae." Thesis, Національний авіаційний університет, 2020. https://er.nau.edu.ua/handle/NAU/44920.

Повний текст джерела
Анотація:
Робота публікується згідно наказу ректора від 21.01.2020 р. №008/од "Про перевірку кваліфікаційних робіт на академічний плагіат у 2019-2020 навчальному році". Керівник роботи: доцент кафедри екології, к.т.н., Павлюх Леся Іванівна<br>Object of research biofuel production. Subject – assessment of microalgae application for biofuel production. Aim оf work – To determine the appropriateness of microalgae application for biofuels production. Methods of research: analysis, data comparison, statistical data processing, mathematical modelling.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Magnusson, Mimmi. "Energy systems studied of biogas : Generation aspects of renewable vehicle fuels in the transport system." Doctoral thesis, KTH, Energiprocesser, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105120.

Повний текст джерела
Анотація:
The transport sector is seen as particularly problematic when concerns about climate change and dependency on fossil energy are discussed. Because of this, bioenergy is strongly promoted for use in the transport sector, both on a European level and nationally in Sweden. Even though bioenergy is considered one of the key solutions, it is generally agreed that both supply- and demand-side measures will be needed to achieve a change to a more sustainable transport system. One of the reasons for this is the limited availability of biomass, especially agricultural feedstocks competing with food or feed production. Woody biomass, however more abundant, is also exposed to tough competition from other sectors. In this thesis, the role of biogas as a vehicle fuel in a future sustainable transport system is discussed together with the prerequisites needed to realise such a transport system. Biogas is a biofuel that could be produced in several different ways: by anaerobic digestion, which is a first-generation production route, by gasification, which is a second-generation process, and by catalytic reduction of carbon dioxide, a third-generation technology. The main focus in this thesis is on biogas produced by anaerobic digestion and the results show that there is a significant potential for an increase compared to today’s production. Biogas from anaerobic digestion, however, will only be able to cover a minor part of the demand in the Swedish transport sector. Considering biogas of the second and third generations, the potential for production is more uncertain in a mid-term future, mainly due to competition for feedstock, the possibility to produce other fuels by these processes, and the present immaturity of the technology. The limited potential for replacing fossil vehicle fuels, either by biogas or other renewable fuels, clearly shows the need for demand-side measures in the transport system as well. This thesis shows the importance of technical and non-technical means to decrease the demand for transport and to make the transport as efficient as possible. The results show that both energy-efficient vehicles and behavioural and infrastructural changes will be required. Policies and economic incentives set by governments and decision-making bodies have a prominent role to play, in order to bring about a shift to a more sustainable transport system, however, measures taken on individual level will also have a great impact to contribute to a more sustainable transport system.<br><p>QC 20121116</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Forestier, Edith. "Biosynthesis and accumulation of terpenoids in plants : production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third generation biofuels." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ044.

Повний текст джерела
Анотація:
L’objectif de ce projet de thèse était de caractériser le métabolisme de terpénoïdes (ou isoprénoïdes) chez les plantes supérieures. L’essentiel du travail a consisté à caractériser des triterpènes synthases (TTPS) d’Arabidopsis thaliana, un modèle végétal, ainsi que celles de l’épurge (Euphorbia lathyris), une euphorbe pour laquelle des applications agronomiques sont envisagées. Au cours de ma thèse, j’ai aussi contribué à l’étude du métabolisme et des fonctions des précurseurs de triterpènes et de stérols, ainsi qu’à leurs fonctions biologiques.Les triterpènes synthases, ou 2,3-oxydosqualène cyclases (OSCs), convertissent le substrat 2,3-oxydosqualene (SqO) en une multitude d'alcools triterpéniques, et ainsi amorcent la biosynthèse de dérivés triterpénoïdes (triterpènes oxydés, conjugués, etc ..). Arabidopsis thaliana contient 13 OSCs produisant divers squelettes triterpéniques, de type stéroïdien ou non-stéroïdien. Les produits de cyclisation du SqO ont été élucidés structuralement (GC-MS, RMN) après expression hétérologue des enzymes en levure erg7. Cette levure est déficiente en lanostérol synthase (ERG7), ce qui permet d'accumuler le SqO, substrat des cyclases. Lorsque le mutant est transformé avec un ADNc codant une triterpène synthase, il est capable de convertir le SqO en un ou plusieurs triterpènes. Cependant, la caractérisation des 13 OSCs d'Arabidopsis réalisée de façon hétérologue en levure n’a pas été établie inplanta. De façon surprenante, certains des composés produits dans les levures erg7 transformées n'ont jamais été détectés chez Arabidopsis. C'est pourquoi il a été nécessaire de reconsidérer les fonctions biochimiques exactes de ces enzymes dans un contexte végétal<br>The subject of this PhD thesis is part of a research project entitled "Production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third generation biofuels," whose acronym is EULAFUEL. This project is funded by a multipartner program ANR-KBBE and has been extended until December 2013. The aim of this PhD project is to get new insights into the aspects related with the biosynthesis and accumulation of latex triterpenoids. In addition, for comparison, a major objective of the thesis is to characterize functionally the enzymes involved in the synthesis of triterpenes in the model plant Arabidopsis thaliana. Triterpene synthases, also named oxidosqualene cyclases (OSCs), convert 2,3-oxidosqualene (OS) into a multitude of triterpene alcohols and there by initiate triterpene biosynthesis. Arabidopsis thaliana for instance has 13 OSCs producing diverse skeletons of steroidal or non-steroidal triterpenes. Cyclization products of a given enzyme have been characterized biochemically using a yeast heterologous expression system. However, for the majority of Arabidopsis triterpene synthases, inplanta studies are lacking. In fact, most of the compounds produced in yeast expressing such enzymes have never been detected in wild-type Arabidopsis. This is a reason why we should reconsider the exact biochemical function of triterpene synthases in the plant context. Then, in a comparative approach in E. lathyris, we project to study the specific triterpene accumulation in the laticifers, a specialized cell type where high amounts of lanosterol, an unusual OS cyclization product for plants, accumulate
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fattahi, Hanieh. "Third-generation femtosecond technology." Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-179044.

Повний текст джерела
Анотація:
Chirped pulse amplification in solid-state lasers is currently the method of choice for producing high-energy ultrashort pulses, having surpassed the performance of dye lasers over 20 years ago. The third generation of femtosecond technology based on short-pulse-pumped optical parametric chirped pulse amplification (OPCPA) holds promise for providing few-cycle pulses with terawatt-scale peak powers and kilowatt-scale-average powers simultaneously, heralding the next wave of attosecond and femtosecond science. OPCPA laser systems pumped by near-1-ps pulses support broadband and efficient amplification of few-cycle pulses due to their unrivaled gain per unit length. This is rooted in the high threshold for dielectric breakdown of the nonlinear crystals for even shorter pump pulse durations. Concomitantly, short pump pulses simplify dispersion management and improve the temporal contrast of the amplified signal. This thesis covers the main experimental and theoretical steps required to design and operate a high-power, high-energy, few-cycle OPCPA. This includes the generation of a broadband, high-contrast, carrier envelope phase (CEP)-stable seed, the practical use of a high-power thin-disk regenerative amplifier, its efficient use for pumping a multi-stage OPCPA chain and compression of the resulting pulses. A theoretical exploration of the concept and its extension to different modes of operation, including widely-tunable, high-power multi-cycle pulse trains, and ultrabroadband waveform synthesis is presented. Finally, a conceptual design of a field synthesizer with multi-terawatt, multi-octave light transients is discussed, which holds promise for extending the photon energy attainable via high harmonic generation to several kiloelectronvolts, nourishing the hope for attosecond spectroscopy at hard-x-ray wavelengths.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pryor, Owen. "Ignition Studies of Diisopropyl Ketone, A Second-Generation Biofuel." Honors in the Major Thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1637.

Повний текст джерела
Анотація:
This thesis focuses on ignition of diisopropyl ketone (DIPK), a new biofuel candidate that is produced by endophytic conversion. The ignition delay times behind reflected shockwaves were modeled in a high-pressure shock tube. The ignition delay times were compared to other biofuels and gasoline surrogates. Parametric studies of the ignition delay experiments were performed between 1-10 atm and 900 -1200K. An OH optical sensor was developed in conjunction for the ignition delay experiments. The OH optical sensor uses a microwave discharge lamp to generate light at 308 nm that will then be shined through the combustion reaction. Using Beer-Lambert law the concentration of OH can be obtained during ignition and oxidation of hydrocarbon fuels in a shock tube. DIPK ignition delay time experiments are planned in two shock tubes (located at UCF and UF) to provide ignition and OH time-histories data for model validation.<br>B.S.A.E.<br>Bachelors<br>Mechanical and Aerospace Engineering<br>Engineering and Computer Science<br>Aerospace Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hosseini-Khorasgani, Sayed-Ali. "Third harmonic generation in semiconductor superlattices." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Griffiths, Gary. "Towards a third generation analyst workbench." Thesis, Teesside University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Biofuel of third generation"

1

Bajpai, Pratima. Third Generation Biofuels. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2378-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Third generation. Skotaville, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fthenakis, Vasilis. Third generation photovoltaics. InTech, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma, Jian-Guo, ed. Third Generation Communication Systems. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18924-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fattahi, Hanieh. Third-Generation Femtosecond Technology. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20025-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Camaro, the third generation. HPBooks, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Third generation wireless systems. Artech House, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

International Conference on Advanced Robotics (3rd 1987 Versailles). Towards third generation robotics. IFS (Publications), 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1922-, Bertrand Maurice, ed. The third generation world organization. M. Nijhoff, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gibson, Barbara. The Kennedys: The third generation. Thunder's Mouth Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Biofuel of third generation"

1

Bajpai, Pratima. "Cultivation of Third Generation Biofuel." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bajpai, Pratima. "Production of Biofuel from Microalgae." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moreira Neto, João, Andrea Komesu, Luiza Helena Da Silva Martins, Vinicius O. O. Gonçalves, Johnatt Allan Rocha De Oliveira, and Mahendra Rai. "Third-Generation Biofuels: An Overview." In Sustainable Biofuel and Biomass. Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429265099-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gajraj, Randhir S., Gajendra P. Singh, and Ashwani Kumar. "Third-Generation Biofuel: Algal Biofuels as a Sustainable Energy Source." In Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer India, 2018. http://dx.doi.org/10.1007/978-81-322-3763-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bajpai, Pratima. "General Background and Introduction." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bajpai, Pratima. "Fuel Potential of Third Generation Biofuels." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bajpai, Pratima. "Characteristics of Algae." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bajpai, Pratima. "Harvesting and Drying of Algal Biomass." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bajpai, Pratima. "Extraction of Oil from Algal Biomass." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bajpai, Pratima. "Current Trends and the Future of the Algae-Based Biofuels Industry." In Third Generation Biofuels. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2378-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biofuel of third generation"

1

Opara, M., and Natalia Azarova. "THE USE OF ENVIRONMENTAL WASTE IN THE ISSUE OF GREEN ECONOMY OF THE REGIONS." In Modern machines, equipment and IT solutions for industrial complex: theory and practice. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mmeitsic2021_270-273.

Повний текст джерела
Анотація:
Currently, an urgent issue is the preservation of the environment, the cyclical use of waste for the production of new products, the preservation and multiplication of the planet’s natural resources. After all, the quality of life of each person directly depends on the state of the environment and the factors that affect its preservation. These factors are an integral part of the development of a green economy. This article discusses the possibility of producing alternative energy sources, such as biofuels of three generations.The first generation is solid, liquid, and gaseous biofuels. Second-generation fuel is obtained from the biomass of plant and animal material residues, or grown crops. As an example, such a type of fuel as biogas, which consists of carbon dioxide and methane, and with its further processing, namely the separation of carbon dioxide, you can get biomethane. In the same way, such fuels as biodiesel and bioethanol can be obtained from the biological mass. And the most unusual raw material for the production of third-generation fuel is biofuel from algae. Unfortunately, the development of the green economy in Russia is taking slow steps, but at present this issue is being paid more attention. The development of technologies for obtaining alternative energy sources will allow us to produce not only new types of energy, but also to preserve the environment of our priceless planet, through the use of raw materials and waste that are not in demand in everyday human life.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Privat, Romain, Jean-Noël Jaubert, and Michel Molière. "Ethanol and Distillate Blends: A Thermodynamic Approach to Miscibility Issues: Part 3 — Generalization to Other Alcohols (Methanol, Isopropanol and 1-Butanol)." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68561.

Повний текст джерела
Анотація:
In the framework of a multistep program devoted to the ternary gasoil/alcohol/water system, the authors investigated the miscibility of anhydrous and hydrated ethanol qualities with four classes of industrial gasoil having different compositions and densities. To that end, they considered a pseudo binary system made by the various hydrocarbon species on one hand and the alcohol/water sub-system on another hand. Using the UNIQUAC thermodynamic theory and the Group Contribution approach, the team computed the Minimum Miscibility Temperature (“MMT”) for a series of the gasoil/ethanol/water system having water concentrations in ethanol comprised between 0 and 10%. The TMM is the temperature above which the various components of the system form a sole phase. This work is summarized in two papers already published (Part 1: GT 2010-22126; Part 2: GT2011-45896). In the continuity of this prior work and considering the potential interest of alternative alcohols as “gasoil extenders”, the team has generalized this approach to selected C1-C4 alcohols: methanol, isopropanol (or 2-propanol) and n-butanol (or 1-butanol). While methanol is an interesting “energy vector” of coal and biomass via the CTL and BTL processes, isopropanol is a widespread commodity produced by the classical petrochemistry and 1-butanol is a promising biofuel candidate of the second, “lingo-cellulosic” generation. This third part of the project shows that the introduction of these alternative alcohols and their respective interactions with water lead to considerable changes in the liquid-liquid equilibria and important shifts of the MMTs, trends that were difficult to anticipate beforehand.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Onyekakeyah, Luke. "Biofuel Energy Production as Catalyst for Sustainable Agriculture in Nigeria." In International Symposium for Next Generation Infrastructure. University of Wollongong, SMART Infrastructure Facility, 2014. http://dx.doi.org/10.14453/isngi2013.proc.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lokesh, Kadambari, Vishal Sethi, Theoklis Nikolaidis, and Devaiah Karumbaiah. "System Level Performance and Emissions Evaluation of Renewable Fuels for Jet Engines." In ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gtindia2014-8107.

Повний текст джерела
Анотація:
Incessant demand for fossil derived energy and the resulting environmental impact has urged the renewable energy sector to conceive one of the most anticipated sustainable, alternative “drop-in” fuels for jet engines, called as, Bio-Synthetic Paraffinic Kerosene (Bio-SPKs). Second (Camelina SPK &amp; Jatropha SPK and third generation (Microalgae SPK) advanced biofuels have been chosen to analyse their influence on the behaviour of a jet engine through numerical modelling and simulation procedures. The thermodynamic influence of each of the biofuels on the gas turbine performance extended to aircraft performance over a user-defined trajectory (with chosen engine/airframe configuration) have been reported in this paper. Initially, the behaviour of twin-shaft turbofan engine operated with 100% Bio-SPKs at varying operating conditions. This evaluation is conducted from the underpinning phase of adopting the chemical composition of Bio-SPKs towards an elaborate and careful prediction of fluid thermodynamics properties (FTPs). The engine performance was primarily estimated in terms of fuel consumption which steers the fiscal and environmental scenarios in civil aviation. Alternative fuel combustion was virtually simulated through stirred-reactor approach using a validated combustor model. The system-level emissions (CO2 and NOx) have been numerically quantified and reported as follows: the modelled aircraft operating with Bio-SPKs exhibited fuel economy (mission fuel burn) by an avg. of 2.4% relative to that of baseline (Jet Kerosene). LTO-NOx for the user-defined trajectory decreased by 7–7.8% and by 15–18% considering the entire mission. Additionally, this study reasonably qualitatively explores the benefits and issues associated with Bio-SPKs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MIYAKE, TAKEO, and MATSUHIKO NISHIZAWA. "MINIATURE BIOFUEL CELLS FOR DIRECT POWER GENERATION FROM LIVING ORGANISMS." In Proceedings of the Tohoku University Global Centre of Excellence Programme. IMPERIAL COLLEGE PRESS, 2012. http://dx.doi.org/10.1142/9781848169067_0042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chiaramonti, David, Anja Oasmaa, and Yrjo¨ Solantausta. "Fast Pyrolysis Oil for Power Generation." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90245.

Повний текст джерела
Анотація:
Biomass fast-pyrolysis oil (PO) is a liquid biofuel derived from lignocellulosic biomass: it offers several advantages compared to the direct us of solid bio fuels, such as high energy density, storability and transportability typical of liquid fuels, possibility to use the fuel in engines and turbines, easier downscaling of plants (which is a very important aspect for decentralized energy generation schemes). In addition, PO is the lowest cost biofuel, thus offering the possibility to penetrate also the large scale power generation market. Biomass POs have been studied and applications tested for many years, either for heat generation in medium-scale boilers or power generation. The present works reviews and analyses the most relevant experiences carried out so far and published results in power production from biomass PO. Power generation systems (PGS) which are here examined are gas turbines, diesel engines, stirling engines, as well as co-firing applications in large scale power plants (coal or natural gas plants). The main techniques for upgrading this biofuel and their impact on technologies are also shortly introduced and considered. The current status of development for each PO-based power generation option is discussed. This review work showed that long term demonstration (either technical or economical) is however still needed, even for the most developed technologies (use of PO in modified gas turbines and cofiring in natural gas stations): projects are on going to achieve long term demonstration.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Conibeer, G. "Third generation photovoltaics." In 2008 2nd Electronics Systemintegration Technology Conference. IEEE, 2008. http://dx.doi.org/10.1109/estc.2008.4684321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Conibeer, Gavin. "Third generation photovoltaics." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2009. http://dx.doi.org/10.1117/12.828028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rabaey, Jan M. "Wireless beyond the third generation wireless beyond the third generation." In the 2001 international symposium. ACM Press, 2001. http://dx.doi.org/10.1145/383082.383084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jiang, Yunjian, Yong Zhang, Chengcheng Wu, and Nana Geng. "Bi-Objectives Optimization of a Second-Generation Biofuel Supply Chain under Demand Uncertainty." In 2014 International Conference of Logistics Engineering and Management. American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413753.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biofuel of third generation"

1

UCSC iGEM, UCSC iGEM. Sustainable Next Generation Biofuel Production. Experiment, 2014. http://dx.doi.org/10.18258/2814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Koder, Ronald L., David Crouse, and Sean Elliott. Hybrid Metamaterials for Solar Biofuel Generation. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada614033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ganguli, Sumitrra, Abhishek Somani, Radha K. Motkuri, and Cary N. Bloyd. India Alternative Fuel Infrastructure: The Potential for Second-generation Biofuel Technology. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1530891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

S. Bernabei, J. Hosea, C. Kung, et al. A Third Generation Lower Hybrid Coupler. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/792992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ricci, Michael, R. and O. James Fiske. Third Generation Flywheels for electric storage. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/932894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zatserklyaniy, Andriy. A search for third generation scalar leptoquarks. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/900000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Velizhanin, Kirill A. Inorganic nanoparticles for third generation solar cells. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1291206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zaitseva, Natalia. Third Generation Scintillators (LL18-V-3rdGenScint-PD3Jg). Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1544955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rax, J. M., and N. J. Fisch. Third harmonic generation with ultra-high intensity laser pulses. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10142743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Perera, R. C. C., M. E. Melczer, A. Warwick, A. Jackson, and B. M. Kincaid. Diagnostic beam line for a third generation storage ring. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/10103476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії