Добірка наукової літератури з теми "Catalytic and optical properties"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Catalytic and optical properties".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Catalytic and optical properties":

1

Kryukov, A. I., A. L. Stroyuk, N. N. Zin’chuk, A. V. Korzhak, and S. Ya Kuchmii. "Optical and catalytic properties of Ag2S nanoparticles." Journal of Molecular Catalysis A: Chemical 221, no. 1-2 (November 2004): 209–21. http://dx.doi.org/10.1016/j.molcata.2004.07.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pastoriza-Santos, Isabel, Jorge Pérez-Juste, Susana Carregal-Romero, Pablo Hervés, and Luis M Liz-Marzán. "Metallodielectric Hollow Shells: Optical and Catalytic Properties." Chemistry – An Asian Journal 1, no. 5 (November 20, 2006): 730–36. http://dx.doi.org/10.1002/asia.200600194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ding, Yi, and Mingwei Chen. "Nanoporous Metals for Catalytic and Optical Applications." MRS Bulletin 34, no. 8 (August 2009): 569–76. http://dx.doi.org/10.1557/mrs2009.156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractNanoporous metals (NPMs) made by dealloying represent a class of functional materials with the unique structural properties of mechanical rigidity, electrical conductivity, and high corrosion resistance. They also possess a porous network structure with feature dimensions tunable within a wide range from a few nanometers to several microns. Coupled with a rich surface chemistry for further functionalization, NPMs have great potential for applications in heterogeneous catalysis, electrocatalysis, fuel cell technologies, biomolecular sensing, surface-enhanced Raman scattering (SERS), and plasmonics. This article summarizes recent advances in some of these areas and, in particular, we focus on the discussion of microstructure, catalytic, and optical properties of nanoporous gold (NPG). With advanced electron microscopy, three-dimensional tomographic reconstructions of NPG have been realized that yield quantitative characterizations of key morphological parameters involved in the intricate structure. Catalytic and electrocatalytic investigations demonstrate that bare NPG is already catalytically active for many important reactions such as CO and glucose oxidation. Surface functionalization with other metals, such as Pt, produces very efficient electrocatalysts, which have been used as promising fuel cell electrode materials with very low precious metal loading. Additionally, NPG and related materials possess outstanding optical properties in plasmonics and SERS. They hold promise to act as highly active, stable, and economically affordable substrates in high-performance instrumentation applications for chemical inspection and biomolecular diagnostics. Finally, we conclude with some perspectives that appear to warrant future investigation.
4

Zhao, Jian, and Huaiyong Zhu. "Optical, Catalytic and Photocatalytic Properties of Gold Nanoparticles." Reviews in Advanced Sciences and Engineering 3, no. 1 (March 1, 2014): 66–80. http://dx.doi.org/10.1166/rase.2014.1053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Jun, Xiao Zhang, Zhiyuan Ren, Lun Yang, Yalu Tang, Yalin Ma, Yu Cui, Benling Gao, and P. K. Chu. "Influence of photon reabsorption on the optical and catalytic properties of carbon nanodots/titanium oxide composites." Applied Physics Letters 120, no. 21 (May 23, 2022): 213902. http://dx.doi.org/10.1063/5.0093878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To enhance the optical and catalytic properties of TiO2, carbon nanodots (CNDs) are incorporated to prepare hybrid CNDs/TiO2 materials with different precursor concentrations and the photocatalytic characteristics are evaluated systematically. When the CNDs/TiO2 materials are excited optically, some high-energy photons are reabsorbed by those in the lower energy states, indicating that photon reabsorption of CNDs plays a key role. The results enrich our understanding of the optical and catalytic mechanisms and provide insight into the design of CNDs-based composites.
6

Sakkaki, Milad, and Seyed Mohammad Arab. "Non-catalytic applications of g-C3N4: A brief review." Synthesis and Sintering 2, no. 4 (December 30, 2022): 176–80. http://dx.doi.org/10.53063/synsint.2022.24126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The g-C3N4 which is well known as a polymeric non-metal semiconductor, has been fabricated by thermal polymerization. It has also been used in catalytic applications including, photo-catalysis, removal and degradation of pollutants in water, Friedel-Crafts reactions, oxygen reduction reaction and etc. It has drawn noticeable research attention due to its economical and affordable fabrication, non-toxicity, biocompatibility, good thermal and electrical conductivity, high hardness, Corrosion resistance, and fireproofing properties. Therefore, the g-C3N4 has found non-catalytic applications including composites, cutting tools, improving surface properties, light emitting devices, optical sensors, and solar cells. In the current review, the novel and non-catalytic applications of g-C3N4 have been highlighted.
7

Mykhailovych, Vasyl, Andrii Kanak, Ştefana Cojocaru, Elena-Daniela Chitoiu-Arsene, Mircea Nicolae Palamaru, Alexandra-Raluca Iordan, Oleksandra Korovyanko, et al. "Structural, Optical, and Catalytic Properties of MgCr2O4 Spinel-Type Nanostructures Synthesized by Sol–Gel Auto-Combustion Method." Catalysts 11, no. 12 (December 1, 2021): 1476. http://dx.doi.org/10.3390/catal11121476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spinel chromite nanoparticles are prospective candidates for a variety of applications from catalysis to depollution. In this work, we used a sol–gel auto-combustion method to synthesize spinel-type MgCr2O4 nanoparticles by using fructose (FS), tartaric acid (TA), and hexamethylenetetramine (HMTA) as chelating/fuel agents. The optimal temperature treatment for the formation of impurity-free MgCr2O4 nanostructures was found to range from 500 to 750 °C. Fourier transform infrared (FTIR) spectroscopy was used to determine the lattice vibrations of the corresponding chemical bonds from octahedral and tetrahedral positions, and the optical band gap was calculated from UV–VIS spectrophotometry. The stabilization of the spinel phase was proved by X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis. From field-emission scanning electron microscopy (FE-SEM), we found that the size of the constituent particles ranged from 10 to 40 nm. The catalytic activity of the as-prepared MgCr2O4 nanocrystals synthesized by using tartaric acid as a chelating/fuel agent was tested on the decomposition of hydrogen peroxide. In particular, we found that the nature of the chelating/fuel agent as well as the energy released during the auto-combustion played an important role on the structural, optical, and catalytic properties of MgCr2O4 nanoparticles obtained by this synthetic route.
8

Das, Swapan K., Manas K. Bhunia, and Asim Bhaumik. "Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties." Dalton Transactions 39, no. 18 (2010): 4382. http://dx.doi.org/10.1039/c000317d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thota, Sravan, Yongchen Wang, and Jing Zhao. "Colloidal Au–Cu alloy nanoparticles: synthesis, optical properties and applications." Materials Chemistry Frontiers 2, no. 6 (2018): 1074–89. http://dx.doi.org/10.1039/c7qm00538e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

AKBAR, L., K. ALI, M. SAJJAD, A. SATTAR, B. SALEEM, U. AMJAD, A. RIZWAN, et al. "ENHANCEMENT IN OPTICAL PROPERTIES OF COBALT DOPED TiO2 NANOPARTICLES." Digest Journal of Nanomaterials and Biostructures 15, no. 2 (April 2020): 329–35. http://dx.doi.org/10.15251/djnb.2020.152.329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cobalt doped titanium dioxide has consumed great consideration because of their photo catalytic activity and numerous utilizations in paints, white pigments and tooth paste. The co-precipitation technique was utilized in this present study to produce titanium dioxide nanoparticles using (TTIP) titanium tetra iso-propoxide and cobalt nitrate as a starting precursor. Cobalt doped TiO2nanoparticles were synthesized up to four to seven percent of cobalt composition. The Morphology of nanoparticles, crystal structure and optical characteristics were analyzed by XRD, UV-vis spectroscopy and scanning electron microscopy, respectively. Functional groups of cobalt doped TiO2 nanoparticles were confirmed by Fourier transform infrared spectroscopy (FTIR). The modified cobalt-doped titanium dioxide exhibits increased absorption in UV region as increasing cobalt content. The main purpose of this research is to enhance the photo catalytic activity and observe the dimensions, morphology and cobalt concentration as well as shape of prepared nanoparticles.

Дисертації з теми "Catalytic and optical properties":

1

Tabor, Christopher Eugene. "Some optical and catalytic properties of metal nanoparticles." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D)--Chemistry and Biochemistry, Georgia Institute of Technology, 2010.
Committee Chair: El-Sayed, Mostafa; Committee Member: Perry, Joseph; Committee Member: Wang, Zhong; Committee Member: Whetten, Robert; Committee Member: Zhang, John. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Fan, Yinan. "Rational synthesis of plasmonic/catalytic bimetallic nanocrystals for catalysis." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS189.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Parmi les différents nanocatalyseurs, ceux constitués de nanoparticules de métaux nobles méritent une attention particulière en raison de leurs propriétés électroniques, chimiques et même optiques (dans le cas de transformations renforcées par les plasmons). Le platine ou le palladium sont bien connus pour leurs remarquables propriétés catalytiques, mais ils sont chers et leurs ressources sont limitées. En outre, les nanocatalyseurs monométallique ne peuvent conduire qu'à une gamme limitée de réactions chimiques. Ainsi, notre stratégie a été de développer des nanocatalyseurs bimétalliques composés de deux éléments métalliques qui peuvent présenter des effets synergiques entre leurs propriétés physicochimiques et une activité catalytique accrue. Nous avons ainsi conçu des nanocatalyseurs bimétalliques de type cœur-coquille composés d'un cœur en argent et d'une coquille en platine. L'intérêt est de combiner les activités catalytiques élevées et efficaces de la coquille de platine avec le cœur d'argent hautement énergétique, capable de renforcer les activités de la coquille grâce à ses propriétés plasmoniques. En outre, ces nanoparticules bimétalliques présentent souvent une activité catalytique supérieure en raison de la modification de la distance inter-atomique Pt-Pt (c'est-à-dire l'effet de contrainte). Dans ce travail de thèse, les nanoparticules Ag@Pt ont été synthétisées via un processus en deux étapes utilisant d'une part des nanoparticules d'Ag synthétisées chimiquement comme germes et d'autre part des complexes platine-oleylamine qui sont ensuite réduits à la surface des germes à une température contrôlée. Différentes tailles de germes d'Ag de 8 à 14 nm avec une très faible distribution de taille (<10%) ont été obtenues en ajustant le temps de réaction, la rampe de température, la concentration en précurseur d'Ag et la température finale pendant la synthèse. Différentes épaisseurs de coquille (de 1 à 6 couches atomiques) ont été obtenues en ajustant le rapport entre les concentrations de précurseur de platine et de germe d'argent. L'activité catalytique des nanoparticules Ag@Pt a été testée en considérant une réaction modèle de réduction du 4-nitrophénol en 4-aminophénol par NaBH4 en phase aqueuse. Nous avons observé que l'épaisseur de la coquille de Pt et la taille du noyau d'Ag influençaient les propriétés catalytiques et conduisaient à une activité catalytique accrue par rapport à l'argent ou au platine pur. Ceci a été attribué à des effets synergiques. De plus, nous avons observé une augmentation de l'activité catalytique des nanoparticules Ag et Ag@Pt sous irradiation lumineuse. Ce phénomène a été corrélé à la génération d'électrons chauds dans les noyaux d'Ag. Afin de développer une plateforme de nanocatalyse supportée, nous avons fabriqué des auto-assemblages 3D appelés aussi supercristaux composés de nanoparticules d'Ag@Pt obtenus spontanément après dépôt sur un substrat solide en raison de leur distribution de taille étroite et de leur forme homogène. L'activité catalytique de ces supercristaux pour la réaction d'évolution de l’hydrogène (HER) a été étudiée en suivant in situ par microscopie optique la production de nanobulles de gaz H2. Trois comportements distincts dans l'activité photo-catalytique (activité, activité intermittente et non-activité) ont été observés sur les supercristaux dans la même région d'intérêt. En outre, 50 % des assemblages ont été déterminés comme étant actifs pour l'HER qui a été démontrée comme étant accompagnée par une corrosion oxydative de l’argent
Among several nanocatalysts, those based on noble metal NPs deserve particular attention because of their electronic, chemical and even optical properties (in the case of plasmonic-enhanced transformations). Platinum or palladium are well known for their remarkable catalytic properties, but they are expensive and their resources are limited. In addition, single component nanocatalysts can only lead to a limited range of chemical reactions. Thus, our strategy was to develop bimetallic nanocatalysts composed of two metal elements that can exhibit synergistic effects between their physicochemical properties and enhanced catalytic activity. We have thus designed bimetallic nanocatalysts of the core-shell type composed of a silver core and a platinum shell. The interest is to combine the high and efficient catalytic activities of the platinum shell surface with the highly energetic silver core capable of enhancing the activities of the shell through its plasmonic properties. In addition, these bimetallic NPs often exhibit superior catalytic activity due to the modification of the Pt-Pt atomic bonding distance (i.e. the strain effect). In this thesis work, Ag@Pt NPs have been synthesized via a two-step process using chemically synthesized spherical Ag NPs as seeds on the one hand and platinum complexes with oleylamine on the other hand which are then reduced on the surface of the seeds at a controlled temperature. Different Ag seed sizes from 8 to 14 nm with a very low size distribution (<10%) have been obtained by adjusting the reaction time, temperature ramp, Ag precursor concentration and final temperature during the synthesis. The control of the shell thicknesses (from 1 to 6 atomic layers) has been possible by adjusting the ratio of platinum precursor to silver seed concentrations. The catalytic activity of the core-shell Ag@Pt NPs was tested by a model reaction of reduction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. We have observed that the thickness of the Pt shell and the size of the Ag core influence the catalytic properties and led increased catalytic activity compared to pure silver or platinum. This was attributed to synergistic effects. Furthermore, we have observed an enhancement of the catalytic activity of Ag and Ag@Pt NPs under light irradiation. This is correlated to the generation of hot electrons in the Ag core. Finally, in order to develop a supported nanocatalysis platform, 3D self-assemblies also called supercrystals composed of Ag@Pt nanoparticles have been spontaneously obtained after deposition on a solid substrate due to their narrow size distribution and homogeneous shape. The catalytic activity of these supercrystals for the hydrogen evolution reaction (HER) has been studied by following in situ by optical microscopy the production of H2 gas nanobubbles. Three distinct behaviors in photo-catalytic activity (activity, intermittent activity and non-activity) have been observed on the supercrystals in the same region of interest. In addition, 50% of the assemblies were determined to be active for HER which was shown to be accompanied by oxidative corrosion of silver
3

Schwenk, Nicola [Verfasser], Todd B. [Gutachter] Marder, and Ulrich [Gutachter] Schatzschneider. "Seeing the Light: Synthesis of Luminescent Rhodacyclopentadienes and Investigations of their Optical Properties and Catalytic Activity / Nicola Schwenk ; Gutachter: Todd B. Marder, Ulrich Schatzschneider." Würzburg : Universität Würzburg, 2018. http://d-nb.info/1160188025/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mildner, Stephanie [Verfasser], Christian [Akademischer Betreuer] Jooß, Michael [Akademischer Betreuer] Seibt, and Peter [Akademischer Betreuer] Crozier. "Pr1-xCaxMnO3 for Catalytic Water Splitting - Optical Properties and In Situ ETEM Investigations / Stephanie Mildner. Gutachter: Christian Jooß ; Michael Seibt ; Peter Crozier. Betreuer: Christian Jooß." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1076673627/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Suyeon. "Synthesis and properties of mono and bi- metallic nanoparticles of noble metals; towards fabrication of novel functional nanoparticles assemblies." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les nanoparticules de métaux nobles ont suscité un grand intérêt ces dernières années dans divers domaines en raison de leurs propriétés physiques et chimiques distinctes telles que les propriétés optiques, catalytiques ou magnétiques. Dans cette thèse, nous avons étudié les différentes approches permettant d'intégrer deux métaux dans un même système, comme les nanoparticules bimétalliques, ou les super-réseaux binaires pour obtenir de nouvelles propriétés. Nous avons mis au point une méthode de croissance à partir de graines pour synthétiser de manière rationnelle des nanoparticules cœur-coquille Au(ou Ag)@M (M=Ag, Pd, Pt). L'impact des paramètres de synthèse tels que la concentration des précurseurs métalliques, la nature des ligands ou la température sur les paramètres clés des nanoparticules (taille du noyau, épaisseur de la coque, dispersion) a été étudié. Les propriétés optiques, vibratoires et catalytiques des différentes nanoparticules bimétalliques ont été caractérisées en fonction de leur structure, de leur composition chimique, du nombre de couches atomiques de la couche et de la cristallinité du noyau. En outre, des super-réseaux binaires de NP, qui sont co-assemblés à partir de deux composants complémentaires différents, ont également été signalés. Plusieurs conditions d'assemblage (rapport de taille effective, rapport de concentration, température de dépôt, méthode de dépôt) ont été explorées. Le mécanisme physique responsable de la variation structurelle observée a ainsi été identifié. Une variété de structures cristallines pour les super-réseaux binaires telles que AlB2, NaZn13, NaCl ont été produites. Enfin, les propriétés magnétiques des super-réseaux binaires de nanoparticules Fe2O3/Au ont été étudiées. Elles sont déterminées par la distance interparticulaire des nanoparticules Fe2O3 modulée par l'insertion des nanoparticules Au
Noble metal nanoparticles (NPs) have attracted a great interest last years in various domains due to their distinct physical and chemical properties such as optical, catalytic or magnetic properties. In this thesis, we investigated the various approaches to integrate two metals in the same system, such as bimetallic nanoparticles, or binary superlattices to obtain new properties. We have developed seed-mediated growth method to rationally synthesis core-shell NPs Au(or Ag)@M (M=Ag, Pd, Pt). The impact of synthesis parameters such as concentration of metallic precursors, nature of ligands or temperature on key NPs parameters (core size, shell thickness, dispersity) was studied. The optical, vibrational and catalytic properties of different bimetallic NPs were characterized according to their structure, chemical composition, number of shell atomic layer and core crystallinities. In addition, binary NP superlattices, which are co-assembled from of two different complementary components were also reported. Several assembly conditions (effective size ratio, concentration ratio, deposition temperature, deposition method) were explored. The physical mechanism responsible for the observed structural variation was thus identified. A variety of crystalline structures for the binary superlattices such as AlB2, NaZn13, NaCl were produced. Finally, the magnetic properties of Fe2O3/Au NP binary superlattices were studied. They are determined by the interparticle distance of Fe2O3 NPs modulated by the insertion of Au NPs
6

Gozin, Yael. "Catalytic antibody 1E9: properties and selectivity /." Zürich : ETH, 2006. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hörnlund, Erik. "Catalytic Properties of Protective Metal-Oxides." Doctoral thesis, KTH, Materials Science and Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Diddams, P. A. "Sheet silicates : structure and catalytic properties." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sesay, I. M. "Redox properties of some catalytic oxides." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dordick, Jonathan Seth. "Unusual catalytic properties of horseradish peroxidase." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/16488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Applied Biological Sciences, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE
Bibliography: leaves 217-231.
by Jonathan Seth Dordick.
Ph.D.

Книги з теми "Catalytic and optical properties":

1

National Institute of Standards and Technology (U.S.), ed. Optical properties. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rickey, Welch G., ed. Organized multienzyme systems: Catalytic properties. Orlando: Academic Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1932-, Weber Marvin J., ed. Optical materials: Properties. Boca Raton, Fla: CRC Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Martinez, G., ed. Optical Properties of Semiconductors. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8075-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zaitsev, Alexander M. Optical Properties of Diamond. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04548-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Klingshirn, C., ed. Optical Properties. Part 2. Berlin/Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b98078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klingshirn, C., ed. Optical Properties. Part 1. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b55683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kasper, E., and C. Klingshirn, eds. Optical Properties. Part 3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-47055-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1934-, Hummel Rolf E., Guenther Karl H, and Wissmann P. 1936-, eds. Handbook of optical properties. Boca Raton: CRC Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fox, Mark. Optical properties of solids. 2nd ed. Oxford: Oxford University Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Catalytic and optical properties":

1

Meng, Qingguo. "Optical, Electrical, and Catalytic Properties of Metal Nanoclusters Investigated by ab initio Molecular Dynamics Simulation: A Mini Review." In Photoinduced Processes at Surfaces and in Nanomaterials, 215–34. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1196.ch011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gonçalves, Carla M. B., Joa˜o A. P. Coutinho, and Isabel M. Marrucho. "Optical Properties." In Poly(Lactic Acid), 97–112. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470649848.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miller, L. S. "Optical Properties." In Electronic Materials, 25–32. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Itoh, Tadashi, Tsutomu Araki, Masaaki Ashida, Tetsuo Iwata, Kiyofumi Muro, and Noboru Yamada. "Optical Properties." In Springer Handbook of Metrology and Testing, 587–663. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16641-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Onuma, Takeyoshi. "Optical Properties." In Gallium Oxide, 475–500. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bányai, Ladislaus Alexander. "Optical Properties." In A Compendium of Solid State Theory, 111–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37359-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lentes, Frank-Thomas, Marc K. Th Clement, Norbert Neuroth, Hans-Jürgen Hoffmann, Yuiko T. Hayden, Joseph S. Hayden, Uwe Kolberg, and Silke Wolff. "Optical Properties." In The Properties of Optical Glass, 19–164. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-57769-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Itoh, Tadashi, Tsutomu Araki, Masaaki Ashida, Tetsuo Iwata, Kiyofumi Muro, and Noboru Yamada. "Optical Properties." In Springer Handbook of Materials Measurement Methods, 531–607. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-30300-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grundmann, Marius. "Optical Properties." In Graduate Texts in Physics, 265–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13884-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sirdeshmukh, D. B., L. Sirdeshmukh, and K. G. Subhadra. "Optical Properties." In Alkali Halides, 103–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04341-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Catalytic and optical properties":

1

Balamurugan, S., Josny Joy, M. Anto Godwin, S. Selvamani, and T. S. Gokul Raja. "ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lindner, Bernhard Lee. "Probing the Martian Atmosphere in the Ultraviolet." In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/orsa.1993.tud.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Several fundamental differences in atmospheric chemistry exist between Mars and the Earth. The martian atmosphere is primarily CO2 (95%), with strong vertical mixing, cold temperatures (typically 220K), low pressures (6 mb at the surface), high atmospheric dust and cloud particle content, and no man-made atmospheric constituents. Earlier difficulties in explaining why the atmosphere was not more decomposed into CO and O2 have been placated with models using updated reaction rates, 'moderate' eddy mixing of order 107 cm2s-1, and the odd hydrogen catalytic cycle (Shimazaki, 1989; Krasnopolsky, 1992). Odd nitrogen and sulfur catalytic cycles are of marginal importance, and other catalytic cycles shown to be important in the terrestrial atmosphere are unimportant on Mars (Yung et al., 1977; Krasnopolsky, 1992). Currently, much work is being undertaken to examine the importance of heterogeneous chemistry (e.g., Atreya and Blamont, 1990; Krasnopolsky, 1992), but uncertainties in particle properties make efficiencies difficult to evaluate. Also, atmospheric chemistry may significantly alter atmospheric composition on climatic timescales, particularly during periods of low obliquity (Lindner and Jakosky, 1985).
3

Park, Y. H., and I. Hijazi. "Properties of Bimetallic Core-Shell Nanoclusters." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gold (Au) and copper (Cu) materials and their combination exhibit the most of the main wanted properties in nanostructures. Nobel metals such as Au and Cu have important magnetic, electronic, optical, catalytic and thermal properties. Compared to monometallic clusters, bimetallic nanoclusters have more degrees of freedom and distinct properties due to the presence of two different metals. It is also well known that the shape, surface topography, segregation, mixing, ordering, energetic stability, and electronic structures of bimetallic nanoclusters may depend significantly on their composition. This affords greater opportunity to control their properties by modifying composition as well as size. In this work, we investigated magnetic and electronic properties for AuCu bimetallic core-shell structures and showed that the CuAu coreshell can have a half-metal property through chemical composition modification. Half-metallic ferromagnets attract increasing research interest as potential materials for spintronic device applications.
4

Zainuddin, Shaik, Arefin Tauhid, Mahesh V. Hosur, Shaik Jeelani, and Ashok Kumar. "Recovery of Low-Velocity Impact Properties of Glass Fiber Reinforced Composites Through Self-Healing Technique." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, we report the self-healing of e-glass/epoxy composites achieved through embedding self-healing agents (SHA) filled hollow glass fibers (HGFs). At first, catalytic technique was used to fill bonded HGFs with SHA. The HGFs were then laid on e-glass fibers and the laminates were fabricated using vacuum assisted resin molding (VARIM) technique. Low-velocity impact tests at two different energy levels were conducted multiple times in the closest proximity to determine the healing efficiency. Optical microscopic study was done to see the changes in the SHA filled HGFs samples before and after impact. Results showed significant recovery of impact properties with 4.47% lost in peak load after second impact in SHA samples whereas it was 27.7% in control samples. The loss in energy to peak load was 20.44% in SHA filled samples, whereas 41% in control samples. Optical microscopy images showed filling of cracks produced after impact with SHA reflecting the significant recovery of impact properties.
5

Huang, Xiaohua, Ivan H. El-Sayed, and Mostafa A. El-Sayed. "The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio- and biomedical applications." In Optics & Photonics 2005, edited by Clemens Burda and Randy J. Ellingson. SPIE, 2005. http://dx.doi.org/10.1117/12.625431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumbhakar, P., S. Biswas, and A. K. Kole. "Fabrication of quantum dots, metal nanostructures and 2D nanocomposites materials for enhanced photo-catalytic and nonlinear optical properties for applications in future photonic devices." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ozalp, Nesrin, and Vidyasagar Shilapuram. "Characterization of Activated Carbon for Carbon Laden Flows in a Solar Reactor." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Carbon is not only a major product of the methane decomposition but also a catalyst for the heterogeneous methane decomposition reaction. It is highly desirable that the morphology and surface properties of the product carbon be controlled to maximize their catalytic effects. In this paper, we characterize the physical properties of two activated carbon samples by sizes, and crystallographic structures using scanning electron microscope, x-ray diffraction, particle size analyzer, and surface area measurement. The paper also includes high temperature thermogravimetric experiment results on the carbon–hydrogen reaction to show if the injected carbon particles reacts with the formed hydrogen, which has not been studied in solar thermal hydrocarbon decomposition before. Results show that carbon does not react with hydrogen to form methane or any other intermediate compounds up until 900°C, which explains the favorable effect of carbon laden flow experiments for catalytic methane decomposition at lower temperatures. These results will be used to identify the optimal operating conditions for our solar reactor.
8

Bakhtiyarov, Sayavur I., and Dennis A. Siginer. "Rheometric Studies of New Class Ionic Liquid Nanolubricants." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The traditional lubricating materials used in space, such as mineral oils, polyol ester, PFPE, Pennzane, etc. have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability (i.e. low vapor pressure), high viscosity index (wide liquid range), low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Thermophysical and chemical analyses are another important required set of tests for the newly developed space lubricants. Some of these properties for liquid lubricants are base oil and additive volatility, creep, surface tension, viscosity, chemical composition, weight loss, density, vapor pressure, etc. Unfortunately, the properties such as non-linearity in the rheological behavior of the lubricants were not studied well for newly developed systems. The rheological properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. The rheological measurements for the newly developed ionic liquid nanolubricant were conducted using rotational rheometer AES G-2 of “parallel-plates” mode.
9

Du, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso, and K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The combination of organic and inorganic materials forms unique composites with properties that neither of the two components provides. Such functional materials are considered innovative advanced materials that enable applications in many fields, including optics, electronics, separation membranes, protective coatings, catalysis, sensors, biotechnology, and others. The challenge of incorporating inorganic particles into an organic matrix still remains today, especially for nanoparticles, due to the difficulties in their dispersion, de-agglomeration and surface modification. NanoGram has pioneered a nanomaterials synthesis technology based on laser pyrolysis process to produce a wide range of crystalline nanomaterials including complex metal oxides, nitrides and sulfides and with precisely controlled compositions, crystal structure, particle size and size distributions. In this paper we will present some examples of nanocomposites prepared using different polymer host materials and phase-pure rutile TiO2. The inorganic component can be dispersed at higher 50 weight percent into the polymer matrix. We have demonstrated a 0.2–0.3 increase of refractive index in the composite over that of host polymer while maintaining high optical transparency. These nanocomposites can be used in a range of applications or optical devices, such as planar waveguides, flat panel displays, optical sensors, high-brightness LEDs, diffraction gratings and optical data storage. Experimental data on TiO2 nanoparticle characterization, dispersion technique, surface modification and will be presented and nanocomposite properties discussed.
10

Илья Сергеевич, Мельчаков,, Дмитриев, Георгий Сергеевич, Занавескин, Леонид Николаевич, and Максимов, Антон Львович. "OBTAINING ALIPHATIC PETROLEUM POLYMER RESINS BY VARIOUS METHODS." In Высокие технологии и инновации в науке: сборник статей международной научной конференции (Санкт-Петербург, Ноябрь 2022). Crossref, 2022. http://dx.doi.org/10.37539/221116.2022.81.34.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Приведены результаты получения алифатических нефтеполимерных смол тремя способами. Определено, что термический и инициированный способы получения смолы в результате дают только жидкие смолы. Каталитический способ позволяет получить твердые смолы, по свойствам приближенным к коммерческим. Определен оптимальный катализатор и приведена блок схема получения алифатической смолы. The results of obtaining aliphatic petroleum polymer resins by three methods are presented. It has been determined that the thermal and initiated methods of producing resin give only liquid resins. The catalytic method makes it possible to obtain solid resins with properties close to commercial ones. The optimal catalyst was determined and a block diagram for the production of an aliphatic resin was given.

Звіти організацій з теми "Catalytic and optical properties":

1

Veloso, Rita Carvalho, Catarina Dias, Andrea Resende Souza, Joana Maia, Nuno M. M. Ramos, and João Ventura. Improving the optical properties of finishing coatings for façade systems. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541592743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The need to improve energy efficiency of the building stock has led to a continuous increase in the implementation of exterior thermal insulation systems, such as ETICS. Progressively, these systems are being applied with darker colours, increasing the concern for hygrothermal behaviour and durability. Despite the significant developed studies, very few reports regarding their optical properties are available. The optical and catalytic capacity turns nanomaterials into excellent candidates for use in finishing coatings with high solar reflectance with dark colours without affecting the aesthetic characteristics, thus improving the durability of such coatings. Our study targeted the development of innovative envelope systems by increasing their solar reflectance through new finishing coatings formulations with the inclusion of nanoparticles. For that, it is necessary to develop and optimize nanoparticles formulations to achieve a high near-infrared reflectance. Here, we studied how the incorporation of reflective nanomaterials influence the optical behaviour of a black colourant for a finishing coating, varying the concentration in the coating from 0 to 20%. Such optical performance was experimentally evaluated through spectral reflectance calculations using a modular spectrophotometer, which allowed an understanding of the relation between these properties and the morphological and structural characteristics of the nanoparticles. The results from such studies can help formulate new finishing coatings with increased near-infrared reflectance of buildings façades, using, for instance, more than one type of nanoparticle.
2

Roesler, Collin S. Particulate Optical Closure: Reconciling Optical Properties of Individual Particles with Bulk Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada300437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5991403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6164447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7245066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5127564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7027281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/7069514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/7069542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Self, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5601114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії