Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Ceramic proppants.

Статті в журналах з теми "Ceramic proppants"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Ceramic proppants".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Cutler, R. A., D. O. Enniss, A. H. Jones, and S. R. Swanson. "Fracture Conductivity Comparison of Ceramic Proppants." Society of Petroleum Engineers Journal 25, no. 02 (1985): 157–70. http://dx.doi.org/10.2118/11634-pa.

Повний текст джерела
Анотація:
Abstract Lightweight, intermediate-strength proppants have been developed that are intermediate in cost between sand and bauxite. A wide variety of proppant materials is characterized and compared in a laboratory fracture conductivity study. Consistent sample preparation, test, and data reduction procedures were practiced, which allow a relative comparison of the conductivity of various proppants at intermediate and high stresses. Specific gravity, proppants at intermediate and high stresses. Specific gravity, corrosion resistance, and crush resistance of each proppant also were determined. pr
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Wen, Desheng Zhou, Tuan Gu, Yanhua Yan, Xin Yang, and Shucan Xu. "Experimental Investigation on the Influence of Proppant Crushing on the Propped Fracture Conductivity." Processes 13, no. 7 (2025): 2166. https://doi.org/10.3390/pr13072166.

Повний текст джерела
Анотація:
Hydraulic fracturing is a key stimulation technique for enhancing the productivity of tight sandstone reservoirs, with the conductivity of propped fractures serving as a critical parameter for evaluating stimulation effectiveness. This study investigated the conductivity behavior of propped fractures through laboratory experiments using commonly used oilfield proppants. The effects of proppant size, type, concentration, and proppant combination on fracture conductivity were systematically evaluated. Results show that at low closure stress, conductivity differences among various proppant types
Стилі APA, Harvard, Vancouver, ISO та ін.
3

B, Guo. "Effect of Fluid Contact Angle of Oil-wet Ceramic Fracture Proppant on the Water Flow from Sandstones to Proppant Packs." Petroleum & Petrochemical Engineering Journal 6, no. 1 (2022): 1–9. http://dx.doi.org/10.23880/ppej-16000295.

Повний текст джерела
Анотація:
Ceramic fracture proppants are extensively used for enhancing oil and gas well productivity in low-permeability reservoirs. Previous work reported attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of lack of method for measuring contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined on the basis of observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant pack
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Campos, Vitor Polezi Pesce, Gisele Aparecida Amaral Labat, Eduardo Sansone, Douglas Gouvea, and Guilherme Frederico Bernardo Lenz e Silva. "Development of Sodium Hydroxide-Activated Metakaolin with Nanocarbon Materials as Synthetic Ceramic Proppants." Materials Science Forum 912 (January 2018): 251–56. http://dx.doi.org/10.4028/www.scientific.net/msf.912.251.

Повний текст джерела
Анотація:
The use of proppants in hydraulic fracturing has significantly grown worldwide in recent years. Discoveries of large unconventional reservoirs in the north of Brazil have collaborated to give it the 10th position among countries with the world's largest shale reserves. Nowadays, studies on nanomaterials that are used as additives in proppants are the focus of North America's companies and universities in order to develop either proppants that can suffer mechanical and chemical changes inside the reservoir or that enable their traceability and direction. This paper presents a study on synthesis
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guo, Zixi, Dong Chen, and Yiyu Chen. "Numerical Calculation and Application for Crushing Rate and Fracture Conductivity of Combined Proppants." Energies 17, no. 16 (2024): 3868. http://dx.doi.org/10.3390/en17163868.

Повний текст джерела
Анотація:
Proppant is one of the key materials for hydraulic fracturing. For special situations, such as middle-deep reservoirs and closure pressures ranging from 40 MPa to 60 MPa, using a single proppant cannot solve the contradiction between performance, which means crushing rate and fracture conductivity, and cost. However, using combined proppants is an economically effective method for hydraulic fracturing of such special reservoirs. Firstly, for different types, particle sizes, and proportions of combined proppants, various contact relationships between proppant particles are considered. The rando
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Ming, and Boyun Guo. "Effect of Fluid Contact Angle of Oil-Wet Fracture Proppant on the Competing Water/Oil Flow in Sandstone-Proppant Systems." Sustainability 14, no. 7 (2022): 3766. http://dx.doi.org/10.3390/su14073766.

Повний текст джерела
Анотація:
Ceramic fracture proppants are extensively used for enhancing the recovery of fossil energy and geothermal energy. Previous work has reported the attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of the lack of a method for measuring the contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined based on observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant pa
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Kaiyue, Huijun Wang, Yi Zhou, et al. "Preparation and characterization of low-cost high-performance mullite-quartz ceramic proppants for coal bed methane wells." Science and Engineering of Composite Materials 25, no. 5 (2018): 957–61. http://dx.doi.org/10.1515/secm-2017-0142.

Повний текст джерела
Анотація:
AbstractIn this study, the mullite-quartz-based proppants were successfully prepared by using the coal gangue as the raw materials. Then, the effects of the additive and the sintering temperature on the composition, microstructure, and properties of the proppants were investigated. Results showed that the proppants sintered at 1250°C with the 10 wt% bauxite additive presented the best performance, which was very close to that of the quartz-proppant, and met the operational requirements of the 52 MPa coal bed methane wells. The viscous flow mechanism of the liquid phase formed during the sinter
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Song, Enpeng, Quan Jin, and Ke Cai. "Research on the hardness testing method of ceramsite proppants." Journal of Physics: Conference Series 3021, no. 1 (2025): 012009. https://doi.org/10.1088/1742-6596/3021/1/012009.

Повний текст джерела
Анотація:
Abstract A method for detecting the hardness of ceramic particle support agents is proposed. The feasibility, accuracy, and repeatability of the method are studied. Taking commonly used ceramic particle supports as the research object, the problem of difficult hardness detection caused by the macroscopic morphology of ceramic particle supports was solved by optimizing the pre-treatment sample preparation method; Using the method of controlling a single variable, the specifications (mesh size) and origin of the ceramic particle support agent were changed separately. The hardness of the ceramic
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liang, Tiancheng, Jinwei Zhang, Chuanyou Meng, Nailing Xiu, Bo Cai, and Haifeng Fu. "Conductivity prediction of proppant-packs based on particle size distribution under variable stress conditions." E3S Web of Conferences 205 (2020): 03010. http://dx.doi.org/10.1051/e3sconf/202020503010.

Повний текст джерела
Анотація:
The conductivity of the proppant-packs is critical in the productivity of hydraulically fractured wells. Proppants are also the best medium for studying particle packing. Sand and ceramic media are two most common proppants used for hydraulic fracturing. This study focuses on investigate the relation between conductivity and properties of proppant-packs, the particle-size distribution, porosity and mean particle diameter have been measured. The porosity of the proppant pack under zero pressure is determined from bulk density and apparent density. To accurately measure the porosity under variab
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alkan, Gözde, Peter Mechnich, and Johannes Pernpeintner. "Improved Performance of Ceramic Solar Absorber Particles Coated with Black Oxide Pigment Deposited by Resonant Acoustic Mixing and Reaction Sintering." Coatings 12, no. 6 (2022): 757. http://dx.doi.org/10.3390/coatings12060757.

Повний текст джерела
Анотація:
Spherical particles based on bauxite-type raw materials, commonly referred to as proppants, are state-of-the-art for particle receivers of concentrated solar power plants. Particles are heated in a fluidized reactor by focused sunlight and are transported to a heat-exchanger or a storage tank. Therefore, key properties for absorber particles are high solar absorptance and mechanical endurance. Due to their relatively poor content of color-giving transition-metal cations, bauxite-derived proppants show limited solar absorptance, which is even deteriorating by long-term heat exposure. A deep-bla
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dzhienalyev, Tolebi, Alla Biryukova, Bagdaulet Kenzhaliyev, Alma Uskenbaeva, and Galiya Ruzakhunova. "Mullite–Silicate Proppants Based on High-Iron Bauxite and Waste from Metallurgical Industry in Kazakhstan." Ceramics 7, no. 4 (2024): 1488–99. http://dx.doi.org/10.3390/ceramics7040096.

Повний текст джерела
Анотація:
The suitability of microsilica as a raw material for the production of ceramic mullite–silicate proppants was assessed. The chemical and mineralogical compositions of the initial materials were studied. The mineral composition of bauxite is mainly represented by gibbsite Al(OH)3 and, to a lesser extent, kaolinite Al4[Si4O10](OH)8, with impurities of hematite and quartz. It is established that, in order to obtain mullite–silicate proppants, compositions containing 10–20% microsilica are optimal. The sintering of these compositions occurs at 1350–1380 °C. A lightweight ceramic proppant was obtai
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tong, Yu Ping, Hui Xian Wang, and Qing Feng Wang. "Preparation of a New Fracture Ceramic Proppant." Applied Mechanics and Materials 438-439 (October 2013): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.207.

Повний текст джерела
Анотація:
A new fracture ceramic proppant was prepared using the low-cost raw bauxite mineral as raw material, by adding the auxiliary material such as potash feldspar, manganese powder and nanocalcium carbonate. The obtained proppants were characterized by XRD and SEM. The crushing rate, particle size, sphericity and roundness of the products were satisfied the recommendation in the standard of the American Petroleum Institute APIR-60.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Biryukova, A. A., T. D. Dzhienalyev, and A. V. Boronina. "Ceramic Proppants Based on Ultrabasic Rocks of Kazakhstan Chromite Ore Deposits." Materials Science Forum 946 (February 2019): 169–73. http://dx.doi.org/10.4028/www.scientific.net/msf.946.169.

Повний текст джерела
Анотація:
The purpose of the work is the obtaining of magnesium silicate ceramic proppants, based on ultrabasic overburden rocks of Kempirsai deposits of chromite ores (Kazakhstan). The chemical and mineralogical composition of ultrabasic overburden rock was studied by chemical, microscopic and X-ray diffraction analyzes. It is established that the main mineral of ultrabasic overburden rocks is serpentine, present in the form of fibrous chrysotile and lamellar antigorite. In the impurities are iron oxides and hydroxides, chrome spinel, carbonates, quartz. Assessment of the use of overburden rocks as a r
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Pauliukevich, Yu G., P. S. Laryionov, and I. V. Kavrus. "INFLUENCE OF STRUCTURAL FACTORS ON THE MECHANICAL STRENGTH OF GLASS-CERAMIC PROPANTS." Steklo i Keramika, no. 13 (January 2023): 22–27. http://dx.doi.org/10.14489/glc.2023.01.pp.022-027.

Повний текст джерела
Анотація:
The results of studying the influence of the chemical composition, material structure, crystallization features and isomorphic substitutions in pyroxene solid solutions of the augite type on the mechanical characteristics of glass ceramics are presented. The mechanism of structure formation is shown, which consists in the crystallization of chromium spinel and subsequent growth on its surface of crystals of a pyroxene solid solution of the augite type in the form of spherical intergrowths, which ensures high mechanical strength of glass-ceramic proppants. It has been established that during th
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Biryukova, A. A., T. D. Dzhienalyev, and A. V. Panichkin. "Ceramic proppants for hydraulic fracturing." IOP Conference Series: Materials Science and Engineering 1040 (January 15, 2021): 012008. http://dx.doi.org/10.1088/1757-899x/1040/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Badikova, Albina D., Dilara R. Kireeva, Ivan M. Borisov, Diana I. Kletskova, and Aleksandr I. Voloshin. "DEVELOPMENT TRENDS IN PROPPANT MODIFICATION PROCESSES." Oil and Gas Business, no. 1 (March 6, 2024): 105–30. http://dx.doi.org/10.17122/ogbus-2024-1-105-130.

Повний текст джерела
Анотація:
The widespread use of hydraulic fracturing technology and the growing need for the use of proppants for the production of hard-to-recover hydrocarbon maintains interest in active research of proppant materials, methods of their effective use, and modification methods in order to improve their technological characteristics. Today, quite small volumes of such well-studied propping materials as sand and alumina are still in use. Every year the proppants market is increasingly replenished primarily with ceramic materials modified taking into account geological and technical conditions. The growth
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Dabo, Kofi, Susan Schrader, Richard Schrader, and Sterling Richard. "Using Laboratory Results from New Methods of Measuring Proppant Conductivity to Model Hydraulic Fractures in Reservoir Simulation." European Journal of Technology 6, no. 2 (2022): 62–72. http://dx.doi.org/10.47672/ejt.1117.

Повний текст джерела
Анотація:
Purpose: Hydraulic fracturing processes are conducted to create new fractures in a rock to increase the size, extent, and connectivity of existing fractures. The American Petroleum Institute (API) developed two testing procedures for measuring conductivity of proppants in a laboratory setting, namely; the Short-Term Proppant Conductivity Testing Procedure and Long-Term Proppant Conductivity Testing Method. However, these laboratory testing methods have produced inconsistent results, with a significant coefficient of variance of ±80% from one test to the other even with the use of the same prop
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Denney, Dennis. "Erosion by Sand and Ceramic Proppants During Slurry Injection and Proppant Flowback." Journal of Petroleum Technology 57, no. 03 (2005): 35–37. http://dx.doi.org/10.2118/0305-0035-jpt.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wisniewski, P., J. Szymanska, M. Malek, and J. Mizera. "Optimizing the Lightweight Ceramic Proppants Properties." Acta Physica Polonica A 129, no. 4 (2016): 501–3. http://dx.doi.org/10.12693/aphyspola.129.501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hao, Jianying, Baolin Mu, Yunfeng Gao, Pinbo Bai, Yuming Tian, and Guomin Li. "Toughening effect of mullite whisker within low-density ceramic proppants." Advanced Composites Letters 28 (January 1, 2019): 2633366X1989062. http://dx.doi.org/10.1177/2633366x19890625.

Повний текст джерела
Анотація:
Main crystal phases of low-density ceramic proppants prepared by bauxite and feldspar are granular corundum and whisker-shaped mullite. Mullite whiskers are interlocked with one another and piled up inside the pores. High aspect ratio of mullite whiskers inside the pores can greatly enhance the fracture toughness. The dominant toughening mechanism for the proppants is attributed to crack bifurcation and deflection and pulling out and bridging effect of mullite whiskers.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Chen, Xudong, Saisai Li, Yudong Shang, Jun Wang, and Jiaojiao Zheng. "In situ mullite whisker network formation for high strength and lightweight ceramic proppants." Processing and Application of Ceramics 18, no. 1 (2024): 77–86. http://dx.doi.org/10.2298/pac2401077c.

Повний текст джерела
Анотація:
In this study, a facile in situ sintering method has been proposed for fabricating high strength lightweight mullite whisker network reinforced proppants. The effect of TiO2 on the microstructure, properties and fracture behaviours of the mullite whisker network was researched in detail. The addition of TiO2 promoted the formation of a modified mullite whisker network structure, which effectively improved the flexural strength. The sample containing 4 wt.% TiO2 exhibited an excellent flexural strength of 215.25MPa and low bulk density of 1.53 g/cm3 at 1400 ?C. The TiO2-added mullite whiskers m
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Małek, Marcin, Paweł Wiśniewski, Mateusz Konrad Koralnik, Joanna Szymańska, Jarosław Mizera, and Krzysztof Jan Kurzydłowski. "Experimental ceramic proppants characterization in the process of shale gas extraction." Mechanik, no. 5-6 (May 2016): 516–17. http://dx.doi.org/10.17814/mechanik.2016.5-6.64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Biryukova, A. A., T. D. Dzhienalyev, and T. A. Tikhonova. "Ceramic Proppants Based on Kazakhstan Natural Alumosilicate Resources." Refractories and Industrial Ceramics 58, no. 3 (2017): 269–75. http://dx.doi.org/10.1007/s11148-017-0095-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Li, Xianjun, and Jianying Hao. "Optimization design of low-density and high-strength ceramic proppants by orthogonal experiment." Advanced Composites Letters 29 (January 1, 2020): 2633366X2095487. http://dx.doi.org/10.1177/2633366x20954875.

Повний текст джерела
Анотація:
This study mainly focused on an orthogonal optimization design of low-density and high-strength ceramic proppants prepared by low-grade bauxite and feldspar that met the standard requirements. The orthogonal experimental design of L25 (53) was employed to study the significance sequence of three factors, including milling time of bauxite, milling time of feldspar, and sintering temperature. The results show that the particle size of feldspar is the most important factor for the performance of the proppants. The longer the milling time of feldspar is, the finer the particle size of feldspar is,
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Razgulyaeva, Valeriya M., Irina A. Pavlova, and Elena P. Farafontova. "Felsite in Ceramic Materials Production." Defect and Diffusion Forum 410 (August 17, 2021): 704–8. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.704.

Повний текст джерела
Анотація:
This project is devoted to the study of the felsite properties for the purpose of its application in the production of various types of fine ceramics: ceramic tiles, acid-resistant tiles, aluminosilicate proppants, etc. Felsite is a mixture of quartz (about 40%) and feldspars. In the compositions of ceramic masses, felsite can play the role of both nonplastic due to the quartz content, and flux due to the content of feldspars, that reduces the amount of mixture components. When felsite is fired, the melt appears at a temperature above 950°C. The felsite has a sintering effect when fired at a t
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ramadhan, Dimas, Hidayat Tulloh, and Cahyadi Julianto. "Analysis Study Of The Effect In Selecting Combination Of Fracturing Fluid Types And Proppant Sizes On Folds Of Increase (FOI) To Improve Well Productivity." Journal of Petroleum and Geothermal Technology 1, no. 2 (2020): 92. http://dx.doi.org/10.31315/jpgt.v1i2.3886.

Повний текст джерела
Анотація:
As fracturing materials, fracturing fluid and proppant are two very important parameters in doing hydraulic fracturing design. The combination of fractuirng fluid and proppant selection is the main focus and determinant of success in the hydraulic fracturing process. The high viscosity of the fracturing fluid will make it easier for the proppant to enter to fill the fractured parts, so that the conductivity of the fractured well will be better and can increase the folds of increase (FOI) compared to fracturing fluid with lower viscosity (Economides, 2000). This research was conducted by using
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kukurugya, Frantisek, Jef Bergmans, Ruben Snellings, and Jeroen Spooren. "Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants." Ceramics International 43, no. 18 (2017): 16895–902. https://doi.org/10.1016/j.ceramint.2017.09.090.

Повний текст джерела
Анотація:
Chemical-looping combustion (CLC) technology can play a significant role in decreasing costs for CO<sub>2</sub>&nbsp;capturing in the future. The technology relies on the use of an oxygen carrier (OC) material, which becomes a solid waste material after it is deactivated. The aim of this study was to verify the possibility to produce high-strength ceramic proppants from a spent Cu-based OC, consisting mainly of &alpha;-Al<sub>2</sub>O<sub>3</sub>&nbsp;and a minor content of CuAl<sub>2</sub>O<sub>4</sub>. Experiments were carried out with both pure &alpha;-Al<sub>2</sub>O<sub>3</sub>&nbsp;and a
Стилі APA, Harvard, Vancouver, ISO та ін.
28

de Campos, Vitor Polezi Pesce, Samuel Marcio Toffoli, Douglas Gouvea, and Guilherme Frederico Bernardo Lenz e Silva. "Evaluation of Industrial Rejects of Mineral and Metallurgical Processing as Ceramic Synthetic Proppants." Materials Science Forum 798-799 (June 2014): 503–8. http://dx.doi.org/10.4028/www.scientific.net/msf.798-799.503.

Повний текст джерела
Анотація:
Hydraulic fracturing is a very important technique to increase the productivity and recovery of oil reservoirs with low pressure or high depth. The hydraulic fracturing technique is a method of well stimulation in which liquid under high pressure is pumped down a well to fracture the reservoir rock adjacent to the wellbore. Propping agents are used to keep the fractures/cracks open. They can be made from the reject of mineral extraction processes when they present specifics characteristic. The aim of this paper is the evaluation of the use of industrial rejects to the development of ceramic sy
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Hao, Jianying, Haiqiang Ma, Xin Feng, et al. "Microstructure and fracture mechanism of low density ceramic proppants." Materials Letters 213 (February 2018): 92–94. http://dx.doi.org/10.1016/j.matlet.2017.11.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mocciaro, Anabella, Maria B. Lombardi, and Alberto N. Scian. "Effect of raw material milling on ceramic proppants properties." Applied Clay Science 153 (March 2018): 90–94. http://dx.doi.org/10.1016/j.clay.2017.12.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pavlyukevich, Yu G., P. S. Larionov, L. F. Papko, S. E. Barantseva, and A. P. Kravchuk. "Obtaining Glass Ceramic Proppants Based on Petrurgic Raw Material." Glass and Ceramics 76, no. 7-8 (2019): 286–89. http://dx.doi.org/10.1007/s10717-019-00185-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Vakalova, T. V., L. P. Devyashina, M. A. Burihina, A. S. Kisner, and N. V. Pashenko. "Alumosilicate ceramic proppants based on natural refractory raw materials." IOP Conference Series: Materials Science and Engineering 286 (December 2017): 012012. http://dx.doi.org/10.1088/1757-899x/286/1/012012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wang, Guang, Qinyue Ma, Longqiang Ren, and Jirui Hou. "Preparation and Properties of Lightweight Amphiphobic Proppant for Hydraulic Fracturing." Polymers 16, no. 18 (2024): 2575. http://dx.doi.org/10.3390/polym16182575.

Повний текст джерела
Анотація:
The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant surface. In this study, a lightweight amphiphobic proppant (LWAP) was prepared by coating a lightweight ceramic proppant (LWCP) with phenolic resin, epoxy resin, polytetrafluoroethylene (PTFE), and trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane (TMHFS) using a layer-by-layer method. The results indicated that the LWAP
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Toniolo, Nicoletta, Acacio Rincon Romero, Mauro Marangoni, Mohammed Binhussain, Aldo R. Boccaccini, and Enrico Bernardo. "Glass-ceramic proppants from sinter-crystallisation of waste-derived glasses." Advances in Applied Ceramics 117, no. 2 (2017): 127–32. http://dx.doi.org/10.1080/17436753.2017.1394019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Hao, Jianying, Haiqiang Ma, Xin Feng, Yunfeng Gao, Kaiyue Wang, and Yuming Tian. "Low-temperature sintering of ceramic proppants by adding solid wastes." International Journal of Applied Ceramic Technology 15, no. 2 (2017): 563–68. http://dx.doi.org/10.1111/ijac.12818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Vereshchagin, V. I., and T. S. Petrovskaya. "TRADITIONS AND PERSPECTIVES OF THE TECHNOLOGY OF SILICATES AND NANOMATERIALS DEPARTMENT." Steklo i Keramika, no. 13 (January 2023): 47–50. http://dx.doi.org/10.14489/glc.2023.01.pp.047-050.

Повний текст джерела
Анотація:
The article provides a brief historical outline of the activities of the Technology of Silicates and Nanomaterials Department of the National Research Tomsk Polytechnic University which is the first technical university in the Asian part of Russia. Initially, the Laboratory of Chemical Technology of Mineral Substances, since 1929 the Silicate Technology Department, since 2007 the Technology of Silicates and Nanomaterials Department, nowdays it is one of the leading scientific and educational centers of the country for the study of silicate raw materials, the development of advanced technologie
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wiśniewski, Paweł, Mateusz Konrad Koralnik, Marcin Małek, Joanna Szymańska, Jarosław Mizera, and Krzysztof Jan Kurzydłowski. "Characterization and evaluation properties of ceramic proppants used in the extraction of the unconventional hydrocarbons." Mechanik, no. 5-6 (May 2016): 518–19. http://dx.doi.org/10.17814/mechanik.2016.5-6.65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zarzycka, Dorota, Paweł Wiśniewski, and Jarosław Mizera. "Rheological studies of ceramic slurries used for the preparation of the proppants." Mechanik, no. 5-6 (May 2016): 514–15. http://dx.doi.org/10.17814/mechanik.2016.5-6.63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Man, Shuai, and Ron Chik-Kwong Wong. "Compression and crushing behavior of ceramic proppants and sand under high stresses." Journal of Petroleum Science and Engineering 158 (September 2017): 268–83. http://dx.doi.org/10.1016/j.petrol.2017.08.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kukurugya, Frantisek, Jef Bergmans, Ruben Snellings, and Jeroen Spooren. "Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants." Ceramics International 43, no. 18 (2017): 16895–902. http://dx.doi.org/10.1016/j.ceramint.2017.09.090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Li, Guomin, Xin Chang, Baoshun Zhu, et al. "Sintering mechanism of high-intensity and low-density ceramic proppants prepared by recycling of waste ceramic sands." Advances in Applied Ceramics 118, no. 3 (2018): 114–20. http://dx.doi.org/10.1080/17436753.2018.1537204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Hernández, María, María Herrera, Ricardo Anaya, et al. "High macroscopic neutron capture cross section ceramics based on bauxite and Gd2O3." Science of Sintering 52, no. 4 (2020): 387–403. http://dx.doi.org/10.2298/sos2004387h.

Повний текст джерела
Анотація:
The effect of the addition of Gadolinium oxide (Gd2O3) up to 10 wt.% in bauxite was studied and its thermal behavior compared with pure bauxite. The incorporation of Gd2O3 is of technological interest for the design of smart traceable ceramic proppants used for unconventional gas and oil well stimulation. These high macroscopic neutron capture cross section proppants are used to obtain relevant information, such as the location and height of the created hydraulic fractures, through a neutron based detection technology. The study comprised a set of thermal and sintering behavior analyses up to
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Conconi, M. S., M. Morosi, J. Maggi, P. E. Zalba, F. Cravero, and N. M. Rendtorff. "Thermal behavior (TG-DTA-TMA), sintering and properties of a kaolinitic clay from Buenos Aires Province, Argentina." Cerâmica 65, no. 374 (2019): 227–35. http://dx.doi.org/10.1590/0366-69132019653742621.

Повний текст джерела
Анотація:
Abstract The technological properties of a local kaolin, considered as a potential industrial material, were correlated with the thermal behavior and sintering processes carried out through a series of thermochemical analyses. The chemical and mineralogical characterization of the material was carried out, together with a simple microstructural characterization. The used material corresponded to the kaolinized basement rocks (saprolite zone) mined at La Verónica quarry, Chillar area, Azul County, Argentina. The complete kaolinite-metakaolinite-spinel-mullite thermal series was characterized. S
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Neducin, R. Marinkovic, J. Ranogajec, and V. Mihalj. "The influence of multi component powder characteristics on mechanical properties of ceramic proppants." International Journal of Materials and Product Technology 8, no. 2/3/4 (1993): 459–67. http://dx.doi.org/10.1504/ijmpt.1993.036558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wei, Gongjue, Tayfun Babadagli, Hai Huang, Lei Hou, and Huazhou Li. "A visual experimental study: Resin-coated ceramic proppants transport within rough vertical models." Journal of Petroleum Science and Engineering 191 (August 2020): 107142. http://dx.doi.org/10.1016/j.petrol.2020.107142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Szymanska, Joanna, Pawel Wisniewski, Paulina Wawulska-Marek, and Jaroslaw Mizera. "Determination of loamy resources impact on granulation of ceramic proppants and their properties." Applied Clay Science 166 (December 2018): 327–38. http://dx.doi.org/10.1016/j.clay.2018.09.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Abd El-Kader, M., M. I. Abdou, A. M. Fadl, A. Abd Rabou, O. A. Desouky, and M. F. El-Shahat. "Novel light-weight glass-ceramic proppants based on frits for hydraulic fracturing process." Ceramics International 46, no. 2 (2020): 1947–53. http://dx.doi.org/10.1016/j.ceramint.2019.09.173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ma, Haiqiang, Yuming Tian, and Guomin Li. "Effects of sintering temperature on microstructure, properties, and crushing behavior of ceramic proppants." International Journal of Applied Ceramic Technology 16, no. 4 (2019): 1450–59. http://dx.doi.org/10.1111/ijac.13204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Sun, Hu, Bencheng He, Hongxing Xu, et al. "Experimental Investigation on the Fracture Conductivity Behavior of Quartz Sand and Ceramic Mixed Proppants." ACS Omega 7, no. 12 (2022): 10243–54. http://dx.doi.org/10.1021/acsomega.1c06828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wang, Bo, Huan Li, Enyu Zhang, Jinglong Ma, Zichen Shang, and Xiongfei Liu. "Construction and Application of a Quantitative Perforation Erosion Model Based on Field Experiments." Materials 18, no. 11 (2025): 2507. https://doi.org/10.3390/ma18112507.

Повний текст джерела
Анотація:
Perforation erosion is one of the critical factors influencing the effectiveness of hydraulic fracturing and the productivity of oil and gas wells. This study developed a mathematical model for perforation erosion based on the field experimental data and theoretical analysis. This model comprehensively considers the effects of the rate of change in perforation diameter and the flow coefficient. Through field experiments, the values of the perforation diameter correlation coefficient (α) and the flow coefficient correlation coefficient (β) were determined. The wear behavior of perforations unde
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!