Добірка наукової літератури з теми "Chalcogenide quantum dots"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chalcogenide quantum dots".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Chalcogenide quantum dots":

1

Hao, Qun, Haifei Ma, Xida Xing, Xin Tang, Zhipeng Wei, Xue Zhao, and Menglu Chen. "Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors." Materials 16, no. 23 (November 24, 2023): 7321. http://dx.doi.org/10.3390/ma16237321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, mercury chalcogenide colloidal quantum dots (CQDs) have attracted widespread research interest due to their unique electronic structure and optical properties. Mercury chalcogenide CQDs demonstrate an exceptionally broad spectrum and tunable light response across the short-wave to long-wave infrared spectrum. Photodetectors based on mercury chalcogenide CQDs have attracted considerable attention due to their advantages, including solution processability, low manufacturing costs, and excellent compatibility with silicon substrates, which offers significant potential for applications in infrared detection and imaging. However, practical applications of mercury-chalcogenide-CQD-based photodetectors encounter several challenges, including material stability, morphology control, surface modification, and passivation issues. These challenges act as bottlenecks in further advancing the technology. This review article delves into three types of materials, providing detailed insights into the synthesis methods, control of physical properties, and device engineering aspects of mercury-chalcogenide-CQD-based infrared photodetectors. This systematic review aids researchers in gaining a better understanding of the current state of research and provides clear directions for future investigations.
2

Gelchuk, Y., O. Boreiko, G. Okrepka, and Yu Khalavka. "Synthesis and optical properties of AgInS2 nanoparticles." Chernivtsi University Scientific Herald. Chemistry, no. 818 (2019): 12–19. http://dx.doi.org/10.31861/chem-2019-818-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ternary chalcogenide Ag-In quantum dots (QDs) are more environmentally friendly than known Cd-, Pb- and P-containing nanoparticles. Here we review the literature on colloidal synthesis methods, properties, and promising fields for the application of AgInS2 quantum dots. Similar to the QDs of lead and cadmium chalcogenides, the most accurate control over the structure and morphology of AgInS2 QDs is achieved by using the method of introducing precursors into high-boiling organic solvents. However, to realize the potential applications of ternary quantum dots, in particular as luminescent biomarkers, the quantum dots must be soluble in polar solvents, especially water. The transfer of quantum dots into aqueous solutions is usually accomplished by exchanging primary lyophilic ligands with smaller bifunctional molecules, such as thioglycolic (or mercapto­propionic) acids, which can passivate the surface of the quantum dots while making them soluble in the polar environment. Methods of colloidal synthesis of AgInS2 / ZnS quantum dots can be classified into the following types: Injection of ions into a high-boiling solvent Synthesis in a mixture of solvents Synthesis in the aquatic environment Methods for the synthesis of AgInS2 QDs in both aqueous solution and organic solvent medium are described. Examples of application of quantum dots for biomedical purposes and in photovoltaic and sensory devices are given. Quantum dots have high photostability and brightness, are characterized by a wide range of absorption and narrow spectral bands of radiation, ie meet most of the criteria for fluorescent materials and biosensors for imaging cancer cells in antitumor therapy, immunofluorescent labeling of proteins, detection of toxins s, visualize intracellular structures, etc. Quantum dots of tertiary chalcogenides, in particular CuInS2 and AgInS2, may be an alternative to quantum dots of binary lead and cadmium chalcogenides for use in light-emitting and light-absorbing systems, such as LEDs, sensors and solar absorbers.
3

Mal, J., Y. V. Nancharaiah, E. D. van Hullebusch, and P. N. L. Lens. "Metal chalcogenide quantum dots: biotechnological synthesis and applications." RSC Advances 6, no. 47 (2016): 41477–95. http://dx.doi.org/10.1039/c6ra08447h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Green, Mark, and Hassan Mirzai. "Synthetic routes to mercury chalcogenide quantum dots." Journal of Materials Chemistry C 6, no. 19 (2018): 5097–112. http://dx.doi.org/10.1039/c8tc00910d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this report, we explore the synthetic chemistry behind the development of mercury chalcogenide quantum dots and highlight some key optical properties. Graphical abstract shows a HgTe quantum dots. Reproduced from M. Green, G. Wakefield and P. J. Dobson,J. Mater. Chem., 2003,13, 1076 with permission from The Royal Society of Chemistry.
5

Lukose, Binit, and Paulette Clancy. "A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals." Physical Chemistry Chemical Physics 18, no. 20 (2016): 13781–93. http://dx.doi.org/10.1039/c5cp07521a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands.
6

Chen, Yuetian, and Yixin Zhao. "Incorporating quantum dots for high efficiency and stable perovskite photovoltaics." Journal of Materials Chemistry A 8, no. 47 (2020): 25017–27. http://dx.doi.org/10.1039/d0ta09096d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shuklov, I. A., and V. F. Razumov. "Lead chalcogenide quantum dots for photoelectric devices." Russian Chemical Reviews 89, no. 3 (February 28, 2020): 379–91. http://dx.doi.org/10.1070/rcr4917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

YAGCI ACAR, Funda. "Theranostic Silver Chalcogenide Quantum Dots in Phototherapy." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103397. http://dx.doi.org/10.1016/j.pdpdt.2023.103397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Xiu-Ping, Rong-Jin Huang, Cong Chen, Tianduo Li, and Yu-Ji Gao. "Simultaneous Conduction and Valence Band Regulation of Indium-Based Quantum Dots for Efficient H2 Photogeneration." Nanomaterials 11, no. 5 (April 26, 2021): 1115. http://dx.doi.org/10.3390/nano11051115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Indium-based chalcogenide semiconductors have been served as the promising candidates for solar H2 evolution reaction, however, the related studies are still in its infancy and the enhancement of efficiency remains a grand challenge. Here, we report that the photocatalytic H2 evolution activity of quantized indium chalcogenide semiconductors could be dramatically aroused by the co-decoration of transition metal Zn and Cu. Different from the traditional metal ion doping strategies which only focus on narrowing bandgap for robust visible light harvesting, the conduction and valence band are coordinately regulated to realize the bandgap narrowing and the raising of thermodynamic driving force for proton reduction, simultaneously. Therefore, the as-prepared noble metal-free Cu0.4-ZnIn2S4 quantum dots (QDs) exhibits extraordinary activity for photocatalytic H2 evolution. Under optimal conditions, the Cu0.4-ZnIn2S4 QDs could produce H2 with the rate of 144.4 μmol h−1 mg−1, 480-fold and 6-fold higher than that of pristine In2S3 QDs and Cu-doped In2S3 QDs counterparts respectively, which is even comparable with the state-of-the-art cadmium chalcogenides QDs.
10

Sun, Jianhui, Michio Ikezawa, Xiuying Wang, Pengtao Jing, Haibo Li, Jialong Zhao, and Yasuaki Masumoto. "Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots." Physical Chemistry Chemical Physics 17, no. 18 (2015): 11981–89. http://dx.doi.org/10.1039/c5cp00034c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots (CIS QDs) was studied by means of femtosecond transient-absorption (TA) and nanosecond time-resolved photoluminescence (PL) spectroscopy.

Дисертації з теми "Chalcogenide quantum dots":

1

Wang, Zheng. "Synthesis, properties and applications of glasses containing chalcogenide quantum dots." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, la synthèse, les propriétés et les applications de verres contenant des quantum dots (QDs) de chalcogénure ont été étudiées. Des verres contenant des QDs à base de chalcogénure de plomb (PbSe ou PbS) ont été préparés. Leurs propriétés optiques et leurs applications potentielles ont été explorées en combinaison avec le co-dopage aux ions Tm3+. De plus, sur la base de ces résultats, des verres contenant des QDs de ZnS ou de ZnSe, sans plomb, ont été préparés avec succès. Leurs performances luminescentes ont été encore améliorées par dopage avec des ions de métaux de transition représentés ici par le nickel. Ces résultats jettent les bases pour l’amélioration des propriétés optiques de verres contant des QDs à base de chalcogénure de plomb et aussi pour le développement de verres aux QD sans métaux lourds et donc plus respectueux de l’environnement. Bien que des améliorations futures soient possibles et nécessaires pour des applications réelles, ces verres aux QDs de chalcogénure, développés dans ce travail, présentent un potentiel d'applications dans les domaines des concentrateurs solaires luminescents, de l'anti-contrefaçon optique, de l'éclairage à semi-conducteurs et de la mesure optique de la température
In this dissertation, the synthesis, properties and applications of glasses containing chalcogenide quantum dots (QDs) have been studied. Multicomponent lead chalcogenide QDs glasses (containing PbSe or PbS QDs) were successfully prepared, and their optical properties and potential applications were explored in combination with rare earth Tm3+ ion doping. In addition, based on the results, lead-free and environmentally friendly chalcogenide QDs glasses (containing ZnS or ZnSe QDs) were successfully prepared, and its luminescent performance was further improved by doping with transition metal nickel ions. These results lay the foundation for the improvement of optical properties of lead-based chalcogenide QDs and for the development of environmentally friendly heavy metal-free chalcogenide QDs glasses. Although future improvements are possible and necessary for practical applications, these chalcogenide QDs glasses developed in this work have application potential in the fields of luminescent solar concentrators, optical anti-counterfeiting, solid-state lighting, and optical temperature sensing
2

Schnitzenbaumer, Kyle J. "The Impact of Chalcogenide Ligands on the Photoexcited States of Cadmium Chalcogenide Quantum Dots." Thesis, University of Colorado at Boulder, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3704804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Quantum dots (QDs) are the foundation of many optoelectronic devices because their optical and electronic properties are synthetically tunable. The inherent connection between synthetically controllable physical parameters, such as size, shape, and surface chemistry, and QD electronic properties provides flexibility in manipulating excited states. The properties of the ligands that passivate the QD surface and provide such synthetic control, however, are quite different from those that are beneficial for use in optoelectronic devices. In these applications, ligands that promote charge transfer are desired. To this end, significant research efforts have focused on post-synthetic ligand exchange to shorter, more conductive ligand species. Surface ligand identity, however, is a physical parameter intimately tied to QD excited state behavior in addition to charge transfer. A particularly interesting group of ligands, due to the extraordinarily thin ligand shell they create around the QD, are the chalcogenides S2-, Se2-, and Te2-. While promising, little is known about how these chalcogenide ligands affect QD photoexcited states. This dissertation focuses on the impact of chalcogenide ligands on the excited state dynamics of cadmium chalcogenide QDs and associated implications for charge transfer. This is accomplished through a combination of theoretical (Chapters 2, 3, and 6) and experimental (Chapters 2, 4, 5 and 6) methods. We establish a theoretical foundation for describing chalcogenide capped QD photoexcited states and measure the dynamics of these excited states using transient absorption spectroscopy. The presented results highlight the drastic effects surface modification can have on QD photoexcited state dynamics and provide insights for more informed design of optoelectronic systems.

3

Schornbaum, Julia [Verfasser], and Jana [Akademischer Betreuer] Zaumseil. "Lead Chalcogenide Quantum Dots and Quantum Dot Hybrids for Optoelectronic Devices / Julia Schornbaum. Gutachter: Jana Zaumseil." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2015. http://d-nb.info/1082426415/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schornbaum, Julia Verfasser], and Jana [Akademischer Betreuer] [Zaumseil. "Lead Chalcogenide Quantum Dots and Quantum Dot Hybrids for Optoelectronic Devices / Julia Schornbaum. Gutachter: Jana Zaumseil." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2015. http://nbn-resolving.de/urn:nbn:de:bvb:29-opus4-68977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lystrom, Levi Aaron. "Influence of Organic and Inorganic Passivation on the Photophysics of Cadmium Chalcogenide and Lead Chalcogenide Quantum Dots." Diss., North Dakota State University, 2020. https://hdl.handle.net/10365/31926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Quantum dots (QDs) are promising materials for photovoltaic (PV) and light-emitting diode (LED) applications due to their unique properties: photostability, size-tunable absorptivity, and narrow line-width emission. These properties are tailored by surface passivations by ligands. However, ligands used in the synthesis of colloidal QDs need to be exchanged with ligands designed for specific applications. The mechanism behind ligand exchange is not well understood. Density functional theory (DFT) is utilized to gain fundamental understanding of ligand exchange (LE) and the resulting effect on the photophysics of QDs. Experimental studies show that phenyldithiocarbamates (PTCs) derivatives can improve the photocurrent of QD-based PVs. Our calculations show that the PTC undergoes decomposition on the CdSe QD surface. Decomposed products of PTCs strongly interact with the surface of QDs, which could cause unforeseen challenges during the implementation of these functionalized QDs in PVs. Secondly, we studied the mechanism of photoluminescence (PL) enhancement by hydride treatment. In experiments, the PL increases by 55 times, but the mechanism is unclear. We found that hydride can interact with surface Se2- producing H2Se gas and passivate surface Cd2+. These interactions result in optically active QDs. Thiol derivatives can also improve PL when LE results in low surface coverage of thiols. The PL is quenched if LE is performed at high concentrations and acidic environments. DFT simulations reveal three scenarios for the thiol interacts with QDs: coordination of thiol, networking between surface and/or other ligands, or thiolate formation. It is the last scenario that was found to be responsible for PL quenching. Lastly, PbS(e)/CdS(e) core/shell QDs are investigated to obtain relaxation rates of electron and hole cooling via interactions with phonons. The band structure of the core/shell QDs facilitates carrier multiplication (CM), a process that generates multiple charge carrier pairs per one absorbed photon. It is thought that CM is facilitated because there are interface associated states that reduce carrier cooling. Non-Adiabatic Molecular Dynamics (NAMD) simulations show that this hypothesis is correct and PbSe/CdSe carrier cooling is about two times slower compared to PbS/CdS due to weaker coupling to optical phonons.
6

Page, Robert Christopher. "Synthesis of cadmium chalcogenide based quantum dots for enhanced multiple exciton generation." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/synthesis-of-cadmium-chalcogenide-based-quantum-dots-for-enhanced-multiple-exciton-generation(0e0f2e8d-ea7f-42dc-abef-f230e20eabe5).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Quantum dots (QDs) have the potential to produce more than one exciton per incident photon, if the photon energy is greater than twice the band gap energy. This process of multiple exciton generation (MEG) has the potential to lead to a step change in the efficiency of solar panels, by utilising energy commonly wasted as heat in conventional solar cells. A wide range of CdSe/CdTe and CdTe/CdSe quantum dots with and without a CdS shell were synthesised with varying core sizes and shell thicknesses. The excited state dynamics of these samples were studied with transient absorption and photoluminescence studies, with their MEG efficiencies obtained. Record MEG efficiencies were obtained with values reaching 142 ± 9 % achieved. The charge separation afforded by the type-II electronic configuration, allowed the first attractive biexciton interaction for a type-II QD system, with the potential for reducing the creation energy for a second exciton this affords. Efficient surface passivation of QDs was achieved through the reaction of CdCl2 with CdTe QDs, with near unity photoluminescence quantum yields (PLQYs) achieved. The suppression of surface trap states resulted in mono-exponential photoluminescence decay traces, with a resultant increase in exciton lifetime. Further CdCl2 treatment was carried out on CdSe/CdTe quasi-type-II QDs with alternating ‘Cd rich’ and ‘Te rich’ surfaces to elucidate the processes involved in surface treatment. It is shown that Te surface atoms are preferentially etched upon treatment, with the reaction being more aggressive when ‘Te rich’ surfaces are treated. The importance of surface composition is studied with trap states associated with chalcogen dangling bonds more prevalent and hence the increased requirement for their passivation is outlined. Control of the core/shell interface is also shown to be important in reducing trap states and ultimately increasing PLQYs, which is desirable for many optoelectronic applications.
7

Thiagarajan, Suraj Joottu. "Thermoelectric properties of rare-earth lead selenide alloys and lead chalcogenide nanocomposites." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196263620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nxusani, Ezo. "Synthesis and analysis of Novel Platinum group Metal Chalcogenide Metal Quantum Dot and Electrochemical Markers." University of the Western Cape, 2018. http://hdl.handle.net/11394/6424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Magister Scientiae - MSc (Chemistry)
Although cadmium and lead chalcogenide quantum dot have excellent optical and photoluminescent properties that are highly favorable for biological applications, there still exists increasing concerns due to the toxicity of these metals. We, therefore, report the synthesis of new aqueous soluble IrSe quantum dot at room temperature utilizing a bottom-up wet chemistry approach. NaHSe and H2IrCl6 were utilized as the Se and Ir source, respectively. High-resolution transmission electron microscopy reveals that the synthesized 3MPA-IrSe Qd are 3 nm in diameter. The characteristics and properties of the IrSe Qd are investigated utilizing, Selected Area electron diffraction, ATR- Fourier Transform Infra-Red Spectroscopy, Energy Dispersive X-ray spectroscopy, Photoluminescence, Cyclic Voltammetry and chronocoulometry. A 3 fold increase in the optical band gap of IrSe quantum dot in comparison to reported bulk IrSe is observed consistent with the effective mass approximation theory for semiconductor materials of particles sizes < 10 nm. The PL emission of the IrSe quantum dot is at 519 nm. Their electro-activity is studied on gold electrodes and exhibit reduction and oxidation at - 107 mV and +641 mV, with lowered reductive potentials. The synthesized quantum dot are suitable for low energy requiring electrochemical applications such as biological sensors and candidates for further investigation as photoluminescent biological labels.
9

Akdas, Tugce [Verfasser], and Wolfgang [Gutachter] Peukert. "Colloidal Semiconductor Nanocrystals: The Interplay of Process Steps and Product Properties for the Case of non-toxic Compound Chalcogenide Quantum Dots / Tugce Akdas ; Gutachter: Wolfgang Peukert." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1129455106/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chassin, de Kergommeaux Antoine. "Synthèse de nouveaux types de nanocristaux semi-conducteurs pour application en cellules solaires." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENV057/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour que l'énergie photovoltaïque devienne compétitive, les coûts de production doivent être baissés et l'efficacité des cellules augmentée. Les cellules solaires à base de nanocristaux semi-conducteurs constituent une approche prometteuse pour remplir ces objectifs combinant une mise en œuvre par voie liquide avec la possibilité d'ajuster précisément la largeur de bande interdite et les niveaux électroniques. Aujourd'hui, les rendements de conversion des cellules constituées de nanocristaux de sulfure de plomb approchent les 7%. Seulement, à cause des normes européennes destinées à l'affranchissement du plomb du fait de ses risques pour la santé et l'environnement, de nouveaux matériaux doivent être trouvés. Cette thèse concerne la synthèse de nouveaux types de nanocristaux semi-conducteurs et leur application dans des cellules solaires. La synthèse des nanocristaux de CuInSe2 et de SnS de taille et de forme contrôlées a été effectuée, notamment par des voies de synthèses reproductibles dont le passage à grande échelle est facilement possible. Une analyse approfondie de la structure des nanocristaux de SnS par spectroscopie Mössbauer a montré que ces nanocristaux avaient une forte tendance à s'oxyder, ce qui limite leur utilisation dans des dispositifs électroniques après exposition à l'air. La constitution de couches minces continues ayant de bonnes propriétés électriques a été effectuée par le dépôt contrôlé de nanocristaux ainsi que l'échange de leurs ligands de surface. En particulier, un nouveau type de ligand inorganique a été utilisé qui a montré une augmentation de la conductivité des films multiplié par quatre ordres de grandeurs par rapport aux ligands initiaux. Enfin, la préparation de cellules solaires basées sur ces couches minces de nanocristaux a montré des résultats encourageants et notamment un clair effet photovoltaïque lorsque le dépôt est effectué sous atmosphère inerte
In order to be cost-effective, photovoltaic energy conversion needs to improve the solar cell efficiencies while decreasing the production costs. Nanocrystal based solar cells could fulfil these requirements through solution-processing, band gap and energy level engineering. PbS nanocrystal thin films already proved their potential for use as solar cell active materials with power conversion efficiencies approaching 7%. However, since lead based compounds are not compatible with European regulations and present high risks for health and environment, semiconductor nanocrystals of alternative materials have to be developed. This thesis focuses on novel types of semiconductor nanocrystals and their application in photovoltaics. The first part of the study deals with the synthesis of size- and shape-controlled CuInSe2 and SnS nanocrystals. An in-depth investigation of the structure of SnS nanocrystals using Mössbauer spectroscopy revealed their high oxidation sensitivity, which limits their usability in optoelectronic devices after air exposure. The second part deals with the thin film preparation and the surface ligand exchange of the obtained nanocrystals. Using a fully inorganic nanocrystal-surface ligand system, the deposited films exhibited a current density improved by four orders of magnitude as compared to the initial ligands. Finally, solar cell devices based on nanocrystal thin films were fabricated, which showed encouraging results with a clear photovoltaic effect when processed under inert atmosphere

Книги з теми "Chalcogenide quantum dots":

1

Xiao, Chong. Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49617-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiao, Chong. Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xiao, Chong. Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xiao, Chong. Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Springer London, Limited, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Donegan, John, and Yury Rakovich. Cadmium Telluride Quantum Dots: Advances and Applications. Taylor & Francis Group, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Donegan, John, and Yury Rakovich. Cadmium Telluride Quantum Dots: Advances and Applications. Jenny Stanford Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Chalcogenide quantum dots":

1

Renuga, V., and C. Neela Mohan. "Design, Synthesis, and Properties of I-III-VI2 Chalcogenide-Based Core-Multishell Nanocrystals." In Core/Shell Quantum Dots, 29–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46596-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alam, Mir Waqas, and Ahsanulhaq Qurashi. "Metal Chalcogenide Quantum Dots for Hybrid Solar Cell Applications." In Metal Chalcogenide Nanostructures for Renewable Energy Applications, 233–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119008934.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hussain, Raja Azadar. "Nanomaterials for dye degradation." In Nanoscience, 171–98. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839169427-00171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter presents the modern research outcomes of photocatalytic degradation of hazardous dyes using various nanomaterials. Treatment of hazardous industrial waste is needed to control the pollution of the environment. In this chapter, nanomaterials in general and chalcogenide-based (sulfides, selenides and tellurides) nanomaterials, in particular, have been discussed for photocatalytic dye degradation. The degradation capabilities of pristine metal chalcogenides, and their composites with inorganic (metals, metal oxides, sulfides, selenides, and tellurides) and organic (carbon quantum dots, graphene oxide, reduced graphene oxide and carbon nitride) nanomaterials have been discussed and compared with each other.
4

Zou, Xie, Zhe Sun, and Zhonglin Du. "Metal-chalcogenides nanocomposites as counter electrodes for quantum dots sensitized solar cells." In Metal-Chalcogenide Nanocomposites, 167–85. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-18809-1.00010-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khaledian, Salar, Mohadese Abdoli, Reza Fatahian, and Saleh Salehi Zahabi. "Quantum Dots in Cancer Cell Imaging." In Quantum Dots - Recent Advances, New Perspectives and Contemporary Applications. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.107671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research on quantum dots (QDs) as zero-dimensional nanostructures whose size is not more than a few nanometers has accelerated in the last two decades, especially in the field of medicine. These nanostructures have attracted much attention due to their unique features such as broad excitation range, narrow emission, strong fluorescence, and high resistance to photobleaching. In this chapter, besides common QDs such as cadmium (Cd)-containing semiconductor QDs, other QDs including carbon-based QDs, chalcogenide QDs, and black phosphorus QDs will be discussed. In addition to describing the optical characteristics of these nanostructures, the usual synthesis methods, their modification and cytotoxicity will be reviewed. Finally, the application of each category of QDs in cancer cell imaging will prospect in more detail.
6

Cristina Vasconcelos, Helena. "Optical Nonlinearities in Glasses." In Nonlinear Optics - Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The field of photonics has been the target of constant innovations based on a deep knowledge of the nonlinear optical (NLO) properties of materials and especially on information/data technologies. This chapter compiles some of the main physical aspects needed to understand NLO responses, especially in glasses. Any deviation from the linear correlation between a material’s polarization response and the electric component of an applied electromagnetic field is an example of nonlinear optic behavior. Heavy metal oxide and chalcogenide glasses offer the largest nonlinear response. For example, high refractive index and high dispersion glasses fall in the type of non-resonant devices, while the resonant ones comprise metal nanoparticle doped glasses. Metal nanoparticles’ doped glasses can be pre- pared by the sol-gel method. The optical absorption spectrum of Ag-doped silica glass shows the presence of an absorption band of surface Plasmon Resonance due to Ag nanoparticles at 420 nm and Z-scan has been used to study the NLO properties. This chapter contains a brief discussion of the basic principles of nonlinear optics, the review of the nonlinear optical of glass in general, and two separate sections concerning the nonlinear optical effects in the glasses doped with quantum dots and metals, respectively.
7

Jiang, Xiaomei. "In-Gap State of Lead Chalcogenides Quantum Dots." In Fingerprints in the Optical and Transport Properties of Quantum Dots. InTech, 2012. http://dx.doi.org/10.5772/36404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Chalcogenide quantum dots":

1

Guyot-Sionnest, Philippe. "Mercury Chalcogenide Quantum Dots for Infrared Detection." In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Mello Donega, Celso, Christina H.M. van Oversteeg, Chenghui Xia, Da Wang, Veerle Bogaards, Sandra Van Aert, Johannes Meeldijk, and Sara Bals. "Compound Copper Chalcogenide-Based Heteronanorods: New Materials for Energy Harvesting." In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Akkerman, Quinten A., and Liberato Manna. "Energy Harvesting with Redesigned Colloidal Metal Halide, Chalcogenide and Chalcohalide Nanocrystals." In Internet Conference for Quantum Dots. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.icqd.2020.104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kuno, Masaru K., Keith A. Higginson, John E. Bonevich, Syen B. Qadri, M. Yousuf, and Hedi M. Mattoussi. "Synthesis and characterization of colloidal mercury chalcogenide quantum dots." In International Symposium on Optical Science and Technology, edited by Zeno Gaburro. SPIE, 2002. http://dx.doi.org/10.1117/12.452245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Melnychuk, Christopher, and Philippe Guyot-Sionnest. "Carrier dynamics in small-gap mercury chalcogenide colloidal quantum dots." In Physical Chemistry of Semiconductor Materials and Interfaces XVIII, edited by Daniel Congreve, Hugo A. Bronstein, Christian Nielsen, and Felix Deschler. SPIE, 2019. http://dx.doi.org/10.1117/12.2525354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tang, Xin, Guangfu Wu, and King Wai Chiu Lai. "Interband and intraband optical transitions in mercury chalcogenide colloidal quantum dots." In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017. http://dx.doi.org/10.1109/nano.2017.8117308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shuklov, Ivan A., and Irina I. Soboleva. "Novel Approach to the Preparation of Lead Chalcogenide Colloidal Quantum Dots and Properties Thereof." In IOCN 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/iocn2023-14522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ouyang, Jianying, Yanguang Zhang, Jianping Lu, Ta-Ya Chu, Neil Graddage, Patrick Malenfant, and Ye Tao. "Synthesis of Monodisperse Silver Chalcogenide Quantum Dots with Elevated Precursor Reactivity for the Application in Near Infrared Photodetectors." In 2019 IEEE International Flexible Electronics Technology Conference (IFETC). IEEE, 2019. http://dx.doi.org/10.1109/ifetc46817.2019.9073720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patel, Neil, Scott Geyer, Jennifer Scherer, Moungi Bawendi, Nathan Carlie, J. David Musgraves, Kathleen Richardson, et al. "Infrared Colloidal Quantum Dot Chalcogenide Films for Integrated Light Sources." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iprsn.2011.iwg3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rong, Eric, Arlene Chiu, Christianna Bambini, Yida Lin, Chengchangfeng Lu, and Susanna M. Thon. "New Chalcogenide-Based Hole Transport Materials for Colloidal Quantum Dot Photovoltaics." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії