Добірка наукової літератури з теми "Classification des motifs"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Classification des motifs".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Classification des motifs"

1

Nalle, Derwi Rainord, Luh Gede Astuti, I. Gede Santi Astawa, Luh Arida Ayu Rahning Putri, AAIN Eka Karyawati, and I. Wayan Supriana. "Implementasi Metode Convolutional Neural Network Untuk Pengenalan Pola Motif Kain Tenun Rote Ndao Berbasis Android." JELIKU (Jurnal Elektronik Ilmu Komputer Udayana) 11, no. 1 (2022): 157. http://dx.doi.org/10.24843/jlk.2022.v11.i01.p17.

Повний текст джерела
Анотація:
Rote ndao Ikat Weaving has interesting characteristics in each fabric motif because it has different motifs which indicate the ethnic differences contained in each of the resulting motifs. Rote Ndao weaving has a variety of motifs that are still unknown to many people, so in this study a classification of motifs of rote ndao woven fabrics was carried out using the Convolutional Neural Network method. Weaving motif classification uses 3 motifs with a total of 1050 data including 70 data for Ai Bunak, Dula Kakaik and Lafa Langgak motifs each. Data for 3 fabric motifs is divided into 80% training
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Meranggi, Dewa Gede Trika, Novanto Yudistira, and Yuita Arum Sari. "Batik Classification Using Convolutional Neural Network with Data Improvements." JOIV : International Journal on Informatics Visualization 6, no. 1 (2022): 6. http://dx.doi.org/10.30630/joiv.6.1.716.

Повний текст джерела
Анотація:
Batik is one of the Indonesian cultures that UNESCO has recognized. Batik has a variety of unique and distinctive patterns that reflect the area of origin of the batik motif. Batik motifs usually have a 'core motif' printed repeatedly on the fabric. The entry of digitization makes batik motif designs more diverse and unique. However, with so many batik motifs spread on the internet, it is difficult for ordinary people to recognize the types of batik motifs. This makes an automatic classification of batik motifs must continue to be developed. Automation of batik motif classification can be assi
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prayoga, Arya, Maimunah, Pristi Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani. "Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta." Journal of Applied Computer Science and Technology 4, no. 2 (2023): 82–89. http://dx.doi.org/10.52158/jacost.v4i2.486.

Повний текст джерела
Анотація:
Batik is an Indonesian culture that has been recognized as a world heritage by UNESCO. Indonesian batik has a variety of different motifs in each region. One area that is famous for its batik motifs is Yogyakarta. Yogyakarta has a variety of batik motifs such as ceplok, kawung, and parang which can be differentiated based on the pattern. Yogyakarta batik motifs need to be preserved so they do not experience extinction, one way is by introducing Yogyakarta batik motifs. The recognition of Yogyakarta batik motifs can utilize technology to classify images of Yogyakarta batik motifs based on patte
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Perdana, Am Akbar Mabrur, Muhammad Fajar B, and Abdul Muis Mappalotteng. "Enhancing Batik Classification Leveraging CNN Models and Transfer Learning." JOIV : International Journal on Informatics Visualization 9, no. 3 (2025): 1033. https://doi.org/10.62527/joiv.9.3.2535.

Повний текст джерела
Анотація:
Batik is a traditional art originating from Indonesia and recognized by UNESCO. Batik motifs vary depending on the region of origin. The diverse batik motifs reflect the rich cultural heritage and unique traditions owned by each region in Indonesia. From Sabang to Merauke, each motif features a different story and values, depicting the beauty and diversity of nature and the lives of diverse local people. However, in the context of the modern era that continues to develop, batik motifs also experience renewal and creativity that always adapts to the times. As a result, the diversity of batik mo
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sinaga, Daurat, Cahaya Jatmoko, Suprayogi Suprayogi, and Novi Hedriyanto. "Multi-Layer Convolutional Neural Networks for Batik Image Classification." Scientific Journal of Informatics 11, no. 2 (2024): 477–84. https://doi.org/10.15294/sji.v11i2.3309.

Повний текст джерела
Анотація:
Purpose: The purpose of this study is to enhance the classification of batik motifs through the implementation of a novel approach utilizing Multi-Layer Convolutional Neural Networks (CNN). Batik, a traditional Indonesian textile art form, boasts intricate motifs reflecting rich cultural heritage. However, the diverse designs often pose challenges in accurate classification. Leveraging advancements in deep learning, this research proposes a methodological framework employing Multi-Layer CNN to improve classification accuracy. Methods: The methodology integrates Multi-Layer CNN architecture wit
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sulastri, Endang, Ana Yuniasti Retno Wulandari, Dwi Bagus Rendy Astid Putera, and Vita Dwi Darmawati. "EXPLORATION OF SCIENCE CONCEPTS IN KLAMPAR PAMEKASAN BATIK MOTIFS AS A SCIENCE LEARNING RESOURCE." Jurnal Pendidikan Matematika dan IPA 16, no. 2 (2025): 206–21. https://doi.org/10.26418/jpmipa.v16i2.87928.

Повний текст джерела
Анотація:
Science learning fosters logical and critical thinking by integrating real word contexts, such as the Klampar Pamekasan batik motif, to enhance students understanding of biological classification. Therefore, the objective of this research is to examine the concept of science in the Pamekasan Klampar batik motif as a source for learning science. This study employs an exploratory descriptive method, which involves field observations, interviews with batik artisans and educators, and documentation analysis to comprehensively examine the classification of living organisms depicted in Klampar Pamek
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elvitaria, Luluk, Ezak Fadzrin Ahmad, Noor Azah Samsudin, Shamsul Kamal Ahmad Khalid, Salamun, and Zul Indra. "An Improved Okta-Net Convolutional Neural Network Framework for Automatic Batik Image Classification." JOIV : International Journal on Informatics Visualization 9, no. 1 (2025): 115. https://doi.org/10.62527/joiv.9.1.2591.

Повний текст джерела
Анотація:
Batik is one of Indonesia's most important cultural arts and has received recognition from UNESCO. Batik has high artistic and historical value with a variety of patterns. Currently, Indonesia has 5,849 batik motifs which are generally classified based on shape, color, motif and symbolic meaning. The diversity of batik motifs makes it difficult for ordinary people to fully recognize them. This paper intends to develop an automatic framework for classifying batik motifs as a solution to overcome this issue. To develop this classification automation framework, the paper proposes a new architectu
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ariessaputra, Suthami, Viviana Herlita Vidiasari, Sudi Mariyanto Al Sasongko, Budi Darmawan, and Sabar Nababan. "Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm." JOIV : International Journal on Informatics Visualization 8, no. 1 (2024): 38. http://dx.doi.org/10.62527/joiv.8.1.1386.

Повний текст джерела
Анотація:
Sasambo batik is a traditional batik from the West Nusa Tenggara province. Sasambo itself is an abbreviation of three tribes, namely the Sasak (sa) in the Lombok Islands, the Samawa (sam), and the Mbojo (bo) tribes in Sumbawa Island. Classification of batik motifs can use image processing technology, one of which is the Convolution Neural Network (CNN) algorithm. Before entering the classification process, the batik image first undergoes image resizing. After that, proceed with the operation of the convolution, pooling, and fully connected layers. The sample image of Lombok songket motifs and
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sriani, Sriani, Muhammad Siddik Hasibuan, and Rizkika Ananda. "Classification of Batu Bara Songket Using Gray-Level Co-Occurrence Matrix and Support Vector Machine." Jurnal Riset Informatika 5, no. 1 (2022): 481–90. http://dx.doi.org/10.34288/jri.v5i1.469.

Повний текст джерела
Анотація:
Songket is a traditional woven cloth from the Malay and Minangkabau tribes. Songket can also be classified from the brocade woven family and woven with gold or silver thread. Songket cloth's beauty is the Indonesian people's wealth and preservation. Batu Bara Regency is one of Indonesia's regions with several Songket motifs characteristics. Public knowledge of Batu Bara Songket motifs is still minimal, and the differences between one motif and another are still unknown. This research provides information about the variety of Songket fabrics by classifying six types of Batu Bara Songket motifs,
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sutresno, Stephen Aprius. "The Classification of Batik Besurek Fabric Motifs in Indonesia Utilizing YOLOv8 for Enhanced Cultural Preservation." Journal of Computer System and Informatics (JoSYC) 6, no. 1 (2024): 86–95. https://doi.org/10.47065/josyc.v6i1.6123.

Повний текст джерела
Анотація:
Batik Besurek is an Indonesian cultural heritage that presents a variety of motifs reflecting the richness of creativity and symbolic meanings. A significant challenge in this field is accurately and efficiently identifying and classifying batik Besurek motifs, known for their intricate designs and cultural significance. In efforts towards cultural preservation and development, a combination of modern technology and local wisdom is required. One technology that can be utilized is object detection technology using You Only Look Once (YOLO), specifically the latest version, YOLOv8, for the class
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Classification des motifs"

1

Piipari, Matias. "Inference and classification of eukaryotic cis-regulatory motifs." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gay, Dominique. "Calcul de motifs sous contraintes pour la classification supervisée." Phd thesis, Nouvelle Calédonie, 2009. http://portail-documentaire.univ-nc.nc/files/public/bu/theses_unc/TheseDominiqueGay2009.pdf.

Повний текст джерела
Анотація:
Ces dernières années, l'extraction de motifs locaux (itemsets fréquents et règles d'association) a suscité beaucoup d'entrain pour la classification supervisée. Cette thèse traite du calcul et de l'usage de motifs sous contraintes pour la classification supervisée. Nous nous attaquons à deux problèmes difficiles en classification supervisée à base de motifs et proposons deux contributions méthodologiques : D'un côté, lorsque les attributs sont bruités, les performances des classifieurs peuvent être désastreuses. Les méthodes existantes consistent à corriger les valeurs d'attributs ou supprimer
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gay, Dominique. "Calcul de motifs sous contraintes pour la classification supervisée." Phd thesis, Université de Nouvelle Calédonie, 2009. http://tel.archives-ouvertes.fr/tel-00516706.

Повний текст джерела
Анотація:
Ces dernières années, l'extraction de motifs locaux (itemsets fréquents et règles d'association) a suscité beaucoup d'entrain pour la classification supervisée. Cette thèse traite du calcul et de l'usage de motifs sous contraintes pour la classification supervisée. Nous nous attaquons à deux problèmes difficiles en classification supervisée à base de motifs et proposons deux contributions méthodologiques : D'un côté, lorsque les attributs sont bruités, les performances des classifieurs peuvent être désastreuses. Les méthodes existantes consistent à corriger les valeurs d'attributs ou supprimer
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Claudon, Nicolas. "Classification automatique des diatomées : une approche par les motifs des structures internes /." Thèse, Trois-Rivières : Université du Québec à Trois-Rivières, 2007. http://www.uqtr.ca/biblio/notice/resume/30024826R.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Claudon, Nicolas. "Classification automatique des diatomées : une approche par les motifs des structures internes." Thèse, Université du Québec à Trois-Rivières, 2007. http://depot-e.uqtr.ca/1244/1/030024826.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pensa, Ruggero Gaetano. "Un Cadre générique pour la co-classification sous contraintes : application à l'analyse du transcriptome." Lyon, INSA, 2006. http://theses.insa-lyon.fr/publication/2006ISAL0078/these.pdf.

Повний текст джерела
Анотація:
La recherche de groupements intéressants dans les données booléennes (ensembles d'objets décrits par un ensemble de propriétés) a motivé la conception de méthodes d'extractions de motifs globaux (partitions) et de motifs locaux (ensembles fréquents, règles d'association et concepts formels). Cette thèse concerne la co-classification c'est-à-dire le calcul de bi-partitions (couplage de partitions sur les deux dimensions). Les algorithmes de co-classification disponibles ne permettent aux analystes d'exploiter leur connaissance du domaine qu'à travers un nombre réduit de paramètres. D'autre part
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pensa, Ruggero Gaetano Boulicaut Jean-François Robardet Céline. "Un Cadre générique pour la co-classification sous contraintes application à l'analyse du transcriptome /." Villeurbanne : Doc'INSA, 2007. http://docinsa.insa-lyon.fr/these/pont.php?id=pensa.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gosselin, Stéphane. "Recherche de motifs fréquents dans une base de cartes combinatoires." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00838571.

Повний текст джерела
Анотація:
Une carte combinatoire est un modèle topologique qui permet de représenter les subdivisions de l'espace en cellules et les relations d'adjacences et d'incidences entre ces cellules en n dimensions. Cette structure de données est de plus en plus utilisée en traitement d'images, mais elle manque encore d'outils pour les analyser. Notre but est de définir de nouveaux outils pour les cartes combinatoires nD. Nous nous intéressons plus particulièrement à l'extraction de sous-cartes fréquentes dans une base de cartes. Nous proposons deux signatures qui sont également des formes canoniques de cartes
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grunert, Steffen. "Strukturelles und funktionelles Verständnis von Membranproteinen im Kontext sequenzmotivbasierter Methoden." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229383.

Повний текст джерела
Анотація:
Die vorliegende Arbeit wurde im Rahmen einer kooperativen Promotion zwischen der TU Dresden und der Hochschule Mittweida angefertigt. In dieser werden neuartige, computerorientierte Ansätze für die Analyse von Membranproteinen vorgestellt. Membranproteine sind von essentieller Bedeutung für eine Vielzahl biologischer Prozesse innerhalb eines Organismus und stellen wichtige Zielmoleküle für eine breite Palette von Pharmazeutika dar. Ihre Sequenzen liefern wertvolle und teilweise noch nicht entschlüsselte Informationen über die dreidimensionale Struktur und funktionale Eigenschaften. Innerhalb d
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salah, Saber. "Parallel itemset mining in massively distributed environments." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT297/document.

Повний текст джерела
Анотація:
Le volume des données ne cesse de croître. À tel point qu'on parle aujourd'hui de "Big Data". La principale raison se trouve dans les progrès des outils informatique qui ont offert une grande flexibilité pour produire, mais aussi pour stocker des quantités toujours plus grandes. Les méthodes d'analyse de données ont toujours été confrontées à des quantités qui mettent en difficulté les capacités de traitement, ou qui les dépassent. Pour franchir les verrous technologiques associés à ces questions d'analyse, la communauté peut se tourner vers les techniques de calcul distribué. En particulier,
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Classification des motifs"

1

Jane, Garry, and El-Shamy Hasan M. 1938-, eds. Archetypes and motifs in folklore and literature: A handbook. M.E. Sharpe, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weitlaner-Johnson, Irmgard. Mexican Indian folk designs: 252 motifs from textiles. Dover Publications, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Judith, Weingarten, and Bombardieri Luca, eds. Cretan hieroglyphic seals: A new classification of symbols and ornamental/ filling motifs. F. Serra, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haboucha, Reginetta. Types and motifs of the Judeo-Spanish folktales. Garland, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wilbert, Johannes. In their own words: Introduction, concordance of new motifs, and bibliography. Harvard University, Center for the Study of World Religions, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hayao, Kawai. The Japanese psyche: Major motifs in fairy tales of Japan. Spring, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ashliman, D. L. A guide to folktales in the English language: Based on the Aarne-Thompson classification system. Greenwood Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Delarue, Paul. Le conte populaire français: Catalogue raisonné des versions de France et des pays de langue française d'outre-mer. Editions du C.T.H.S., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Delarue, Paul. Le conte populaire français: Édition en un seul volume reprenant les quatre tomes publiés entre 1976 et 1985. Maisonneuve et Larose, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Delarue, Paul. Le Conte populaire français. Maisonneuve et Larose, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Classification des motifs"

1

Gendron, Patrick, Daniel Gautheret, and Francois Major. "Structural Ribonucleic Acid Motifs Identification and Classification." In High Performance Computing Systems and Applications. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5611-4_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maletzke, André Gustavo, Huei Diana Lee, Gustavo Enrique, et al. "Time Series Classification with Motifs and Characteristics." In Soft Computing for Business Intelligence. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53737-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Furfaro, Angelo, Maria Carmela Groccia, and Simona E. Rombo. "Image Classification Based on 2D Feature Motifs." In Flexible Query Answering Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40769-7_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tohid, Suhaimi, Rafeah Legino, Ruzaika Omar Basaree, Ponirin Amin, and Rahman Amin. "Classification Design Motifs of Traditional Malay Wood Carving." In Proceedings of the International Symposium on Research of Arts, Design and Humanities (ISRADH 2014). Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-530-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Orengo, C., J. Thornton, L. Holm, and C. Sander. "Protein folds and motifs: representation, comparison and classification." In International Tables for Crystallography. International Union of Crystallography, 2006. http://dx.doi.org/10.1107/97809553602060000714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blekas, Konstantinos, Dimitrios I. Fotiadis, and Aristidis Likas. "Protein Sequence Classification Using Probabilistic Motifs and Neural Networks." In Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44989-2_84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schuchhardt, Johannes, Gisbert Schneider, Joachim Reichelt, Dietmar Schomburg, and Paul Wrede. "Classification of Local Protein Structural Motifs by Kohonen Networks." In Bioinformatics: From Nucleic Acids and Proteins to Cell Metabolism. Wiley-VCH Verlag GmbH, 2007. http://dx.doi.org/10.1002/9783527615193.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mikolajczack, Jérôme, Gérard Ramstein, and Yannick Jacques. "SVM-Based Classification of Distant Proteins Using Hierarchical Motifs." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-28651-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kangkachit, Thanapat, and Kitsana Waiyamai. "Comprehensible Enzyme Function Classification Using Reactive Motifs with Negative Patterns." In Machine Learning and Data Mining in Pattern Recognition. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41920-6_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sarrazin-Gendron, Roman, Jérôme Waldispühl, and Vladimir Reinharz. "Classification and Identification of Non-canonical Base Pairs and Structural Motifs." In Methods in Molecular Biology. Springer US, 2012. http://dx.doi.org/10.1007/978-1-0716-3519-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Classification des motifs"

1

Utami, Marissa, Ermatita Ermatita, and Abdiansyah Abdiansyah. "Transfer Learning Implementation for Batik Besurek Motifs Classification: A Comparative Study." In 2024 Ninth International Conference on Informatics and Computing (ICIC). IEEE, 2024. https://doi.org/10.1109/icic64337.2024.10957440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Xubin. "Motifs-Based Multi-Scale Graph Convolution Learning Framework for Attention Deficit/Hyperactivity Disorder Classification." In 2024 IEEE Smart World Congress (SWC). IEEE, 2024. https://doi.org/10.1109/swc62898.2024.00040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lian, Wilson, Fabian Monrose, and John McHugh. "Traffic classification using visual motifs." In the Seventh International Symposium. ACM Press, 2010. http://dx.doi.org/10.1145/1850795.1850804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nguyen, Luong Phat, Julien Mille, Dominique H. Li, Donatello Conte, and Nicolas Ragot. "Efficient Dynamic Texture Classification with Probabilistic Motifs." In 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. http://dx.doi.org/10.1109/icpr56361.2022.9956557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eser, Ercument M., Burak R. Arslan, and Ugur O. Sezerman. "Classification of cohesin family using class specific motifs." In 2013 8th International Symposium on Health Informatics and Bioinformatics (HIBIT). IEEE, 2013. http://dx.doi.org/10.1109/hibit.2013.6661687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mullane, Sean, Ruoyan Chen, Sri Vaishnavi Vemulapalli, et al. "Machine Learning for Classification of Protein Helix Capping Motifs." In 2019 Systems and Information Engineering Design Symposium (SIEDS). IEEE, 2019. http://dx.doi.org/10.1109/sieds.2019.8735646.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Arango-Argoty, G. A., J. A. Jaramillo-Garzon, S. Rothlisberger, and C. G. Castellanos-Dominguez. "Classification of unaligned sequences based on prototype motifs representation." In 2011 6th Colombian Computing Congress (CCC). IEEE, 2011. http://dx.doi.org/10.1109/colomcc.2011.5936297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sheng, Huitao, Kishan Mehrotra, Chilukuri Mohan, and Ramesh Raina. "Classification of gene expression levels using activator and repressor motifs." In 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops, BIBMW. IEEE, 2008. http://dx.doi.org/10.1109/bibmw.2008.4686239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aras, Suhardi, Arief Setyanto, and Rismayani. "Classification of Papuan Batik Motifs Using Deep Learning and Data Augmentation." In 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS). IEEE, 2022. http://dx.doi.org/10.1109/icoris56080.2022.10031320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maletzke, Andre G., Huei D. Lee, Gustavo E. A. P. A. Batista, et al. "Time Series Classification using Motifs and Characteristics Extraction: A Case Study on ECG Databases." In Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press, 2013. http://dx.doi.org/10.2991/.2013.40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Classification des motifs"

1

Lades, M. Motion description for data compression and classification. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/8300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fetterer, F., and D. Gineris. Evaluating ERS-1 Ice Motion and Classification Products. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada267614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ravani, Bahram. Classification and Simulation of Single and Multi-Degree-of-Freedom Motions. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada214925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Shuo, Yingzi (Eliza) Du, and Yi Jiang. Site Verification of Weigh-in-Motion Traffic and TIRTL Classification Data. Purdue University, 2011. http://dx.doi.org/10.5703/1288284314247.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schwartz, Daniel F., Robert R. Bennett, Kenneth J. Graham, Thomas L. Boggs, and Alice I. Atwood. Current Efforts to Develop Alternate TB700-2" Test Protocols for the Hazard Classification of Large Rocket Motors". Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada407047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Costantini, Orsola, and Carlo D’Ippoliti. Mapping fragility – Functions of wealth and social classes in U.S. household finance. Institute for New Economic Thinking Working Paper Series, 2024. http://dx.doi.org/10.36687/inetwp215.

Повний текст джерела
Анотація:
Which households are more exposed to financial risk and to what extent is their debt systemically relevant? To provide an answer, we advance a new classification of the population, adapted from Fessler and Schürz (2017), based on the type of wealth families own and their sources of income. Then, we investigate data from eleven waves of the Survey of Consumer Finances (SCF), a triennial survey run by the U.S. Federal Reserve, to explore the association of different debt configurations and motives to get into debt with our class distinctions. Our new approach allows us to assess competing hypot
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Welch, David, and Gregory Deierlein. Technical Background Report for Structural Analysis and Performance Assessment (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, 2020. http://dx.doi.org/10.55461/yyqh3072.

Повний текст джерела
Анотація:
This report outlines the development of earthquake damage functions and comparative loss metrics for single-family wood-frame buildings with and without seismic retrofit of vulnerable cripple wall and stem wall conditions. The underlying goal of the study is to quantify the benefits of the seismic retrofit in terms of reduced earthquake damage and repair or reconstruction costs. The earthquake damage and economic losses are evaluated based on the FEMA P-58 methodology, which incorporates detailed building information and analyses to characterize the seismic hazard, structural response, earthqu
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!