Добірка наукової літератури з теми "Cleaning process for allograft material"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cleaning process for allograft material".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cleaning process for allograft material"
Putzer, David, Débora Coraça-Huber, Alexander Wurm, Werner Schmoelz, and Michael Nogler. "The Mechanical Stability of Allografts After a Cleaning Process: Comparison of Two Preparation Modes." Journal of Arthroplasty 29 (March 24, 2014): 1642–46. https://doi.org/10.1016/j.arth.2014.03.028.
Повний текст джерелаDeynychenko, Grygoriy, Dmytro Dmytrevskyi, Vitalii Chervonyi, Oleg Udovenko, Oleksandr Omelchenko, and Olga Melnik. "STUDY OF COMBINED CLEANING PROCESS OF SUNROOT TUBERS." EUREKA: Life Sciences 3 (May 31, 2017): 9–14. http://dx.doi.org/10.21303/2504-5695.2017.00347.
Повний текст джерелаTereshkin, Oleg, Dmytro Horielkov, Dmytro Dmytrevskyi, and Vitalii Chervonyi. "THE STUDY OF INFLUENCE OF THE PROCESS OF MECHANICAL ADDITIONAL CLEANING ON THE SURFACE ONION LAYER AT COMBINED PROCESS OF CLEANING." EUREKA: Life Sciences 6 (November 30, 2016): 24–30. http://dx.doi.org/10.21303/2504-5695.2016.00239.
Повний текст джерелаQiu, Qian Sheng, Jing Xian Liu, De Qiang Chang, Ning Mao, and Xi Sun. "Study of Typical Filter Material on Dust Cleaning." Applied Mechanics and Materials 490-491 (January 2014): 58–63. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.58.
Повний текст джерелаLeu, M. C., P. Meng, E. S. Geskin, and L. Tismeneskiy. "Mathematical Modeling and Experimental Verification of Stationary Waterjet Cleaning Process." Journal of Manufacturing Science and Engineering 120, no. 3 (1998): 571–79. http://dx.doi.org/10.1115/1.2830161.
Повний текст джерелаGlushkov, A. L. "Analysis of the design and technological process of grain cleaning machines operating on pneumatic fractional technology (review)." Agricultural Science Euro-North-East 26, no. 3 (2025): 519–35. https://doi.org/10.30766/2072-9081.2025.26.3.519-535.
Повний текст джерелаZhang, Xin, Zeming Fu, Tianyu Zhou, et al. "Study of the water cleaning process by using CFD-DEM method: A case study of coarse filter material." Thermal Science, no. 00 (2023): 88. http://dx.doi.org/10.2298/tsci230206088z.
Повний текст джерелаMat Nawi, M. N., A. F. Alzaghir, H. Husin, M. A. Gebremariam, and M. A. Mohd Azhari. "Effect of Waterjet Cleaning Parameters During Paint Removal Operation on Automotive Steel Components." Journal of Modern Manufacturing Systems and Technology 7, no. 2 (2023): 31–38. http://dx.doi.org/10.15282/jmmst.v7i2.9467.
Повний текст джерелаGuillaume, Villatte, Erivan Roger, Cueff Regis, Wittrant Yohann, Boisgard Stéphane, and Descamps Stéphane. "Evaluation of the biomechanical and structural properties of bone allografts treated with a new cleaning process." World Journal of Advanced Research and Reviews 14, no. 3 (2022): 608–16. https://doi.org/10.5281/zenodo.7732961.
Повний текст джерелаRodrigues, Sandra Iara Furtado Costa, José Henrique Stringhini, Márcio Ceccantini, et al. "CHEMICAL AND ENERGETIC CONTENT OF CORN BEFORE AND AFTER PRE-CLEANING." Ciência Animal Brasileira 16, no. 2 (2015): 158–68. http://dx.doi.org/10.1590/1089-6891v16i217226.
Повний текст джерелаДисертації з теми "Cleaning process for allograft material"
Isaksson, Jenny. "Slag Cleaning of a Reduced Iron Silicate Slag by Settling : Influence of Process Parameters and Slag Modification on Copper Content." Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84798.
Повний текст джерелаKrálová, Marcela. "Samočistící vlastnosti tenkých tištěných vrstev oxidu titaničitého." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2012. http://www.nusl.cz/ntk/nusl-233352.
Повний текст джерелаКниги з теми "Cleaning process for allograft material"
Great Britain. Museum and Galleries Commission. Conservation Unit., ed. Adhesives and coatings. Conservation Unit of the Museums & Galleries Commission in conjunction with Routledge, 1992.
Знайти повний текст джерелаЧастини книг з теми "Cleaning process for allograft material"
Woolley, Elliot, Mala Sian, Samsun Nahar, et al. "Towards Making Polymer Food Packaging Suitable for the Circular Economy: Cleanliness is Next to Godliness." In Lecture Notes in Mechanical Engineering. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_26.
Повний текст джерелаAndrews, K., K. Granland, Z. Chen, Y. Tang, and C. Chen. "Automated 3D-Printer Maintenance and Part Removal by Robotic Arms." In Lecture Notes in Civil Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_27.
Повний текст джерелаMiller, Brett A., and Daniel P. Dennies. "Failures of Brazed Joints." In Analysis and Prevention of Component and Equipment Failures. ASM International, 2021. http://dx.doi.org/10.31399/asm.hb.v11a.a0006828.
Повний текст джерелаThomases, Drew. "Making Pushkar Paradise." In Guest is God. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190883553.003.0003.
Повний текст джерелаte Marvelde, Mireille, Liesbeth Abraham, Herman van putten, and Michiel Franken. "A Box Full of Research: Early Twentieth-Century Documentation on the Scientific Investigation and Restoration of the Eight Group Portraits by Frans Hals*." In Frans Hals. Amsterdam University Press, 2024. https://doi.org/10.5117/9789048566068_ch07.
Повний текст джерелаAnderson, Martha W., and Renie Schapiro. "From Donor to Recipient: The Pathway and Business of Donated Tissues." In Transplanting Human Tissue. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195162844.003.0001.
Повний текст джерелаCope, Angela. "How Hula Hoops Changed Hygiene: From Damp-Cloth Utopianism to Chemical Cleaning." In Plastics, Environment, Culture, and the Politics of Waste. Edinburgh University Press, 2023. http://dx.doi.org/10.3366/edinburgh/9781399511735.003.0003.
Повний текст джерела"electromagnetic field at the particl e has to be computed numerically. An example of such a computation using a program based on [49] is given in Fig. 4. But not only doe s the Mie theory describe an enhancement of the laser intensity in the particles' near field, it also predicts that for certain values of the size parameter nd/X (d denoting the particle diameter, À the laser wavelength) the enhancement should be particularly efficient, resulting in a resonant intensity enhancement, the so-called "Mie-resonances". 3.2.2. Near-field induced substrate damage When inspecting contaminated samples by scanning electron microscopy (SEM) or atomic force microscopy (AFM ) after DLC using ns laser pulses, the consequences of the field enhancement process became obvious: all over the cleaned areas w e found substrate damages localized exactly at the former particle positions [35, 37-39]. These damages manifested as melting pools or even holes in the surface, typical examples can be seen in Fig. 5. The consequences for the laser cleaning process are obvious. The intensity enhancement reduces the maximum laser fluence that can be applied in the process. Usually in laser cleaning studies [19, 31 ] the laser fluence corresponding to the melting threshold of a bare surface is taken as the damage threshold fluence. Our experiments show clearly that this is an inadequate definition. Instead one must take into account the enhanced laser fluence underneath the particles, as it will be discussed in Section 4. Fro m the obtained AFM images we were able to analyse in detail the surface profile at the damaged sites. Here we found that for high field enhancement factors the silicon substrate was not only molten , but that some material was even ablated (see Sec. 4). The momentum transfer to the particles during the ablation process significantly contributes to the cleanin g process and hence local substrate ablation." In Surface Contamination and Cleaning. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-48.
Повний текст джерелаRathi, Dr Meenakshi. "CHEMICAL TRENDS TO KEEP AN EYE ON IN 2022-23." In Futuristic Trends in Chemical, Material Sciences & Nano Technology Volume 2 Book 13. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2023. http://dx.doi.org/10.58532/v2bs13p3ch2.
Повний текст джерела"of the spectral response, the integrated reflection-absorption intensity, of these samples are slightly greater than the intensity of the spectral response of the same samples measured via a 60 ° angle of incidence data (Figure 3). This behavior is expected due to the increase in reflection-absorption sensitivity with increasing angle o f incidence. Here, too, the average initial slope (and hence instrument sen-sitivity) is the same for both transverse and longitudinal orientations. The pronounced non-linearity in slope for the thickest films at 75° angle-of-incidence was unexpected. A n increasingly non-linear response may be observed for thicker absorbing films, and this effect will become more pronounced as the angle of incidence is also increased. The interpretation of the data implying that measurement of a thicker film, sampled at a steeper angle, generated the observed non-linearity in the data is not substantiated by th e calculated spectra for the pre-sent measurement conditions due to the small change from 60 to 75° in the angle of incidence. Furthermore, such a non-linear effect would be most pronounced for measurements on the smoothest substrat e (Figure 4, filled circles) where the ef-fective local orientation of the surface is most constant with respect to the illumi-nation beam. Instead of observing such non-linear behavior the measurements made on the smoothest surface are by far the most linear sample series for the 75° data . We attribute the pronounced non-linearity of the 75° data for the thickest draw-ing-agent films to the morphological characteristics of the material as deposited o n the aluminum test panel surface. As described above, the drawing-agent mate-rial is highly viscous and forms a visibly heterogeneous white film at l-|im thick-ness. Variations in the deposition process produce relatively thick local areas of drawing-agent film and result in accretion of solid residue along the polishing grooves and ridges of the aluminum substrate. Under these circumstances, illumi-natio n of the surface with the FTIR beam at an angle of 75° may result in shadow-ing by contaminant material on ridge structures for all except the smoothest (600 grit polish) surface. The 12-mm diameter focal area of the infrared beam is elon-gated by a factor o f four for this angle of incidence. In contrast, reflectance meas-urements at 60° result in only a factor of 2 elongation, and minimize the shadow-ing effect of thick films except for ridges on the roughest (80 grit polish) surfaces. This interpretation is substantiated by reflectance data for the second test set (lubricant material) as shown in Figure 5. FTIR reflectance measurements have been made at 75° angle-of-incidence for a test series similar to that of the draw-ing-agent set. An analysis of the C-H stretching frequencies shows a strikingly more linear dependence of instrument response with film thickness (with the ex-ception of a single point for one of the panels with a 220 grit surface finish). We believe that this is due to the more fluid characteristic of the lubricant material, which allows the deposited film to conform much more closely to the surface to-pography of the test coupons. This behavior may also account for the stronger de-pendence of the integrated intensity slope with surface roughness, when compared to the nearly constant results for the drawing-agent contaminant examined above." In Surface Contamination and Cleaning. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-6.
Повний текст джерелаТези доповідей конференцій з теми "Cleaning process for allograft material"
Kelley, Don H., and J. F. Perey. "Fiberglass Reinforced Plastic Equipment for Waste Incineration Gas Cleaning." In CORROSION 1991. NACE International, 1991. https://doi.org/10.5006/c1991-91252.
Повний текст джерелаBruck, Gerald. "Alloy Selection for Hot Gas Cleaning Systems." In CORROSION 1997. NACE International, 1997. https://doi.org/10.5006/c1997-97137.
Повний текст джерелаVella, Philip A., and Jessica L. Nickerson. "Hazardous Material Decontamination with Potassium Permanganate for Refinery Turnarounds." In CORROSION 1998. NACE International, 1998. https://doi.org/10.5006/c1998-98321.
Повний текст джерелаHeink, J. B., J. M. Stencel, and A. A. Sagues. "Materials of Construction for Coal Cleaning Applications." In CORROSION 1986. NACE International, 1986. https://doi.org/10.5006/c1986-86234.
Повний текст джерелаStango, Robert J., and Ellen Kargol. "Evaluation of Bristle Blasting Process for Surface Preparation of Ship-Construction Steel." In CORROSION 2012. NACE International, 2012. https://doi.org/10.5006/c2012-01442.
Повний текст джерелаSelby, K. Anthony, and Robert T. Hess. "The Use of Polymers for On-Line Cleaning of Building Water Systems." In CORROSION 1996. NACE International, 1996. https://doi.org/10.5006/c1996-96524.
Повний текст джерелаO’Neill, Tyler. "Laser Cleaning for Surface Preparation for Pre-Weld and Pre-Bonding Applications." In CONFERENCE 2022. AMPP, 2022. https://doi.org/10.5006/c2022-18182.
Повний текст джерелаStango, Robert J., and Piyush Khullar. "Fundamentals of Bristle Blasting Process for Removing Corrosive Layer." In CORROSION 2009. NACE International, 2009. https://doi.org/10.5006/c2009-09191.
Повний текст джерелаMintz, T. S., and K. Shannon. "Corrosion of Aluminum Fined Copper-Tube Heat Exchanger Coils." In CORROSION 2015. NACE International, 2015. https://doi.org/10.5006/c2015-05963.
Повний текст джерелаMarks, Chuck, Michael J. Little, Marc A. Kreider, and Robert D. Varrin. "Benefits of Partial Removal of Corrosion Deposits from Nuclear Steam Generators: ASCA and CODE Applications." In CORROSION 2017. NACE International, 2017. https://doi.org/10.5006/c2017-09481.
Повний текст джерела