Добірка наукової літератури з теми "Conductivité d'interface"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Conductivité d'interface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Conductivité d'interface":

1

Daon, Joffrey. "Matériaux d'Interface Thermique Nanostructurés." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC082/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le domaine de la microélectronique de puissance, les progrès de miniaturisation ne cessent de s’accroître. En effet, le nombre de composants par unité de surface a suivie durant de nombreuses années la loi de Moore. Cette évolution implique une augmentation de la densité d’énergie à évacuer sous forme de chaleur, ce qui rend le contrôle de la température de fonctionnement difficile et a pour effet de diminuer la fiabilité des systèmes électroniques.C’est pourquoi, le management thermique des matériaux d’interface thermique est indispensable pour pérenniser le bon fonctionnement des dispositifs de puissance dans leur environnement. L’utilité de ces matériaux est d’améliorer l’évacuation de la chaleur des composants électroniques vers le milieu environnant via un dissipateur thermique (radiateur, fluide caloporteur). Pour tenter de répondre à ces besoins, ce sujet de thèse est basé sur l’utilisation de nanotubes de carbone verticalement alignés, associée à des polymères fonctionnels. Les études se sont portées sur l’ensembledes résistances de contact existantes au sein d’un matériau d’interface thermique, depuis les nanotubes decarbone / Polymère / jusqu’au substrat de cuivre.L’optimisation des interactions est portée sur l’étude de différents polymères ayant la capacité d’engendrer des liaisons covalentes avec les nanotubes de carbone et avec le substrat de cuivre. L’intérêt de ces liaisons covalentes est d’améliorer le transfert de la chaleur via les phonons. Enfin, l’augmentation de la conductivité thermique intrinsèque des polymères est envisagée.Concernant les résultats obtenus, il apparait une nette diminution de chacune des résistances de contact étudiées. Afin de mieux comprendre ces résultats, des études de ces interfaces in-situ ont été réalisées
With progress in microelectronics, the miniaturization of devices is a current issue and the component density on a device follows Moore’s law. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat.Thermal interface materials (TIMs) are used to transfer heat across interfaces, for example between the device and its packaging. However, to meet microelectronics requirement, commercials TIMs still need to be highly thermally conductive.In order to achieve these requirements, this work is focused on the use of vertically aligned carbon nanotubes (VACNTs) and functional polymers. All thermal contact resistances existing in TIMs, from VACNTs / Polymer / to substrate are studied.Interaction optimizations are based on the study of different polymers which are specially designed to develop covalent bonding with the CNTs sidewalls and/or metallic surface. The interest of these covalent bondings is to improve the thermal transfer by phonons. Finally, the increase of the intrinsic thermal conductivity of the polymer is considered.Regarding the results, a decrease of all thermal contact resistances is shown. In order to have a better understanding of these results, the thermal interfaces obtained are analyzed in situ
2

Messaadi, Saci. "Modélisation électrique de couches ou de fils minces métalliques : Effet thermique d'interface verre-couche amorphe." Nancy 1, 1987. http://www.theses.fr/1987NAN10048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En utilisant l'expression de la conductivité électrique donnant l'équivalence entre le modèle de Fuchs-Sondheimer et le modèle de Cottey étendu, des expressions simples de la conductivité sont substituées à celle du modèle de Mayadas-Shatzkcs. De nouvelles formulations simplifiées relatives à la conductivité électrique des doubles couches métalliques, des fils fins métalliques en l'absence de champ magnétique et la magnétorésistance longitudinale de ces derniers sont obtenues dans le cadre du modèle de conduction multidimensionnel
3

Cruz, Carolina Abs Da. "Prédiction de la conductance thermique d'interface silicium métal : utilisation de la dynamique moléculaire." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00716440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'intérêt pour les propriétés thermiques de matériaux nanostructurés est croissant. Ces matériaux sont conçus pour être inclus dans les dispositifs micro-électroniques et les systèmes micro électromécaniques (MEMS) dont le comportement et la fiabilité dépendent fortement de l'évacuation de la chaleur générée. Les matériaux multicouches diélectrique/métal sont de bons candidats pour la conversion thermoélectrique et leur utilisation est envisagée pour diminuer les températures maximales dans les systèmes microélectroniques. La diminution de l'épaisseur des couches permet de diminuer la conductivité thermique, conduisant à un plus grand facteur de mérite de conversion thermoélectrique. Cette diminution est due à la diminution de la conductivité thermique intrinsèque de chaque couche lorsque leur épaisseur décroit jusqu'à des dimensions du même ordre de grandeur que le libre parcours moyen des porteurs de chaleur et à l'influence croissante de la conductance d'interface. La prédiction de la conductivité thermique de tels systèmes passe donc par une simulation fiable du transfert de chaleur aux interfaces. La dynamique moléculaire (DM) est un outil particulièrement bien adapté à ce type d'études. Cependant les résultats des simulations dépendent fortement des potentiels interatomiques utilisés. La comparaison des propriétés prédites à l'aide des différents potentiels interatomiques avec les valeurs expérimentales permet de valider les potentiels pour prédire les propriétés concernées. Dans le premier chapitre, les fonctions mathématiques et les paramètres utilisés dans les potentiels interatomiques sont explicités. Dans le deuxième chapitre, l'objectif est de proposer une méthodologie pour sélectionner les potentiels les plus appropriés pour les études de transfert de chaleur. Cette méthodologie est illustrée pour le Si qui est le semi-conducteur le plus utilisé au sein de dispositifs microélectroniques et MEMS ainsi que pour l'Au, l'Ag et le Cu qui sont les métaux les plus souvent considérés. La conductivité thermique du Si massif est calculée, en utilisant la dynamique moléculaire hors d'équilibre (DMNE) avec trois potentiels parmi les cinq évalués précédemment pour valider cette évaluation. Le système diélectrique/métal qui a été le plus étudié avec la dynamique moléculaire mais également de manière expérimentale jusqu'à présent est certainement le système Si/Au. Les films de Cu et Ag sur des substrats de Si orienté sont les principales combinaisons dans les circuits intégrés de grande échelle. Une paramétrisation du potentiel de type MEAM est développée pour calculer les interactions Si/Au, Si/Ag et Si/Cu dans la troisième partie de ce travail. Les potentiels croisés sont utilisés pour prédire la conductance d'interface et développer les courbes de densité d'états pour les interfaces Si/Au Si/Ag et Si/Cu.
4

Badine, Elie. "Étude des phénomènes de transport thermique dans les couches minces par thermoréflectance." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0530/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec la miniaturisation croissante des systèmes micro et nanoélectroniques, les problématiques thermiques revêtent un enjeu croissant. En effet, la faible taille des composants rend problématique l'évacuation de chaleur. Selon la NASA, 90% des défaillances sont imputables à des défauts d'interconnections thermiques et d'après l'US Air Force, 55% des défaillances électroniques sont attribuables à des effets thermiques. Devenues très courantes dans les domaines des nanotechnologies et des énergies renouvelables, les couches minces présentent des caractéristiques thermiques propres (confinement) et des défis métrologiques particuliers (taille des échantillons, influence du substrat sur la mesure). Le transfert de chaleur à l'échelle submicrométrique diffère du transfert de chaleur dans les matériaux massifs à cause de l'effet de confinement spatial propre aux nanostructures. Ainsi, la diffusivité thermique α et la conductivité thermique κ de ces couches minces sont des paramètres qui affectent la performance et la durée de vie de ces couches dans une application donnée. Ce mémoire de thèse porte sur le développement d'un banc de mesure, basé sur les variations de réflectivité d'un matériau en fonction de la température ou thermoréflectance, pour la caractérisation thermique à l'échelle submicrométrique. Dans ce travail, nous avons développé des modèles thermiques tridimensionnels dans des systèmes à deux et trois couches ainsi que les expressions théoriques du signal de thermoréflectance mesuré suite à une excitation thermique de la surface de l'échantillon. Ces expressions ont été développées en tenant compte de l'effet des résistances thermiques aux interfaces. Les modèles ont été validés expérimentalement par des mesures sur des couches minces d'or déposées sur un substrat de silice. Les mesures de thermoréflectance ont été ensuite appliquées à des couches minces d'acide polylactique. Finalement, des couches minces d'oxyde de zinc dopées par différentes concentrations d'aluminium ont été élaborées par voie électrochimique et leurs propriétés thermiques étudiées à l'aide du banc de mesure de thermoréflectance
With the increasing miniaturization of micro and nanoelectronic systems, the thermal behavior of these systems has become more and more important. The small size of the components makes the heat emitted more troublesome. According to NASA, 90% of failures are due to thermal interconnection faults and according to the US Air Force, 55% of electronic failures are attribuable to thermal effects. Most electronic chips are manufactured using thin films technologies ; therefore, the characteristics of thin metal films have been the bottom line in the ongoing research in nanotechnology and renewable energy domain. Nanoscale heat transfer is different from the heat transfer in bulk materials due to the spatial confinement effect specific to nanostructures. Furthermore, the thermal diffusivity α and thermal conductivity κ of these films are critical parameters affecting their performance and lifetime in a given application. This thesis is devoted to setting up a measurement bench, based on the reflectivity variations of a material as a function of temperature (thermoreflectance), in order to thermally characterize thin films. In this work, a three-dimensional theoretical model is developed in order to describe the temperature distribution in two and three layers systems and obtain the expression of the measured thermoreflectance signal when the surface of the sample is heated by an intensity-modulated Gaussian laser beam. These expressions are obtained by taking into consideration the effect of thermal boundary resistances. These models have been validated experimentally on thin films of gold deposited on fused silica substrate. The thermoreflectance measurements have been then performed on thin films of polylactic acid. Finally, thin films of zinc oxide doped with different concentrations of aluminum have been elaborated during this thesis. The thermal characterization of these films is carried out with the thermoreflectance bench
5

Belkacem, Ismail Yassine. "Étude des mécanismes de transport dans les couches minces d'oxyde Nb₂O₅ formées par voie anodique : relation avec le claquage diélectrique des films en solution." Paris 11, 1989. http://www.theses.fr/1989PA112355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les propriétés de l'interface "oxyde-solution" sont étudiées par des techniques électrochimiques: mesures de capacité différentielle (diagrammes de Mott-Schottky), ou de capacité sous éclairement. L'étude des mécanismes de transport ionique est réalisée par X. P. S et marquage de la surface, avant anodisation, par implantation de gaz rare. Les variations des nombres de transport ont été suivies en fonction de paramètres qui déterminent la croissance des couches formées par voie anodique. Le rôle du champ électrique et de la contamination de la couche par incorporation anionique a été particulièrement étudié. La conductibilité électronique est étudiée en structure M. I. M sous vide en fonction du champ électrique appliqué et de la température. Le rôle important joué par le piégeage est observé à toute valeur de champ électrique et en particulier aux valeurs élevées, où un mécanisme de conduction de type Poole-Frenkel est mis en évidence. Ce processus de transport précède l'apparition d'une conduction de type filamentaire, observée à des valeurs de champ électrique de l'ordre 1. 107 V. M-1. L'injection interfaciale des porteurs à partir de la solution dans les filaments pourrait être à l'origine de l'endommagement localisé du film qui caractérise le stade de claquage.
6

Vladkov, Mihail. "Modélisation des effets d'interface sur les coefficients de transport: propriétés mécaniques des polymères, propriétés thermiques des nanofluides." Phd thesis, Université Claude Bernard - Lyon I, 2007. http://tel.archives-ouvertes.fr/tel-00176186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les phénomènes physiques aux interfaces sont à l'origine de beaucoup de propriétés de grand intérêt pratique dans les matériaux composites. Par des simulations de dynamique moléculaire, nous avons modélisé et étudié la physique des propriétés mécaniques des polymères et des transferts de chaleur dans les nanofluides.
Nous avons développé une méthode d'étude locale de la dynamique dans un fondu de polymère. Ceci a permis d'expliquer les mécanismes impliqués dans la réponse d'un fondu pur à une excitation mécanique externe. Dans le cas d'une interface paroi polymère nous avons montré que la présence de chaînes greffées ralentit localement la dynamique et augmente la densité d'enchevêtrements dans une couche interfaciale de l'ordre de la taille des chaînes. En absence de greffage et pour une surface plane la dynamique est accélérée et la densité d'enchevêtrements diminue. L'étude d'un fondu enchevêtré chargé par des particules de taille inférieure à celle des polymères a montré que l'attraction charge polymère mène à une augmentation effective de la densité d'enchevêtrements à travers des réticulations créées par les charges. Ces phénomènes expliquent le renforcement dans les polymères chargés mesuré à haute température en absence d'effets vitreux.
Par l'étude des effets d'interface sur les transferts thermiques dans un nanofluide nous avons établi une méthode de mesure de la résistance thermique particule-fluide. Nous avons montré que la conductivité est bien prédite par un calcul de milieu effectif. L'effet du mouvement brownien est négligeable et l'augmentation de la conductivité de ces fluides est due à des effets collectifs (agrégation) des particules.
7

Paterson, Jessy. "Etude expérimentale du transport de chaleur dans les nanomatériaux par méthodes électrothermiques." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux effectués lors de cette thèse portent sur l'étude expérimentale des propriétés de transport de chaleur dans divers types de matériaux, de l'échelle macroscopique jusqu'à l'échelle du nanomètre. Les motivations ayant donné naissance à cette étude sont multiples. Les enjeux technologiques liés à la maîtrise accrue de la gestion thermique des technologies actuelles et de demain prennent une ampleur considérable, étant donné la corrélation importante qui existe entre les performances globales d'un dispositif et la gestion efficace des gradients thermiques apparaissant en son sein. En particulier, les performances des applications telles que les générateurs thermoélectriques ou bien les mémoires à changement de phase sont grandement améliorées lorsque leur architecture est basée sur des matériaux possédant des faibles conductivité thermiques. D'un point de vue fondamental, l'étude de matériaux de basse dimension, structurés à des échelles comparables aux longueurs caractéristiques définissant le transport de chaleur, comme le libre parcours moyen des phonons ou leur longueur d'onde, est d'une importance cruciale afin de comprendre les mécanismes responsable des propriétés thermiques atypiques observées dans des matériaux de basse dimension et/ou structurés à l'échelle nanométrique.Cette étude est menée à l'aide de méthodes dites électro-thermiques qui sont décrites de manière approfondie, en particulier concernant la modélisation des données expérimentales. En particulier, la méthode 3ω a été implémentée afin de mesurer la conductivité thermique de matériaux massifs, de couches minces d'épaisseur descendant jusqu'à 17 nm, ainsi que des résistances thermiques d'interfaces présentes dans des systèmes multicouches. Nous avons pu mettre en évidence la réduction de plus d'un facteur 3 de la conductivité thermique d'une matrice cristalline de germanium possédant des nano-inclusions sphériques cristallines d'un diamètre moyen de 16 nm, comparée à son homologue non nanostructuré. La réduction de la conductivité thermique de ce matériau nano-structuré est attribuée à des processus de diffusion des phonons par les nano-inclusions sphériques, ainsi que la distance inter-inclusions qui joue un rôle important quant à la réduction du libre parcours moyen des porteurs de chaleur dans ce matériau hétérogène. Une réduction de la conductivité thermique d'un facteur 5 est également observé dans le chalcogène GeTe après introduction de carbone -- réduction pouvant être expliquée par la présence de grains de tailles nanométriques entourés de carbone amorphe.Le caractère polyvalent de la méthode 3ω nous a permis de quantifier la contribution des résistances thermiques d'interfaces pour des systèmes de type Pt/AI₂O₃/germanium,Pt/Ai₂O₃/sapphire ou bien Pt/SiN/Si. Nos conclusions indiquent que la résistance thermique à l'interface AI₂O₃/germanium peut contribuer de manière substantielle à la résistance thermique globale d'un système multicouche, pouvant être préjudiciable si des applications basées sur des structures comportant ce type d'interface sont envisagées. Enfin, les propriétés thermiques anisotropes d'un substrat de saphir ont été étudiées, en utilisant la méthode 2ω
This dissertation presents an experimental study of heat transport in various types of materials that greatly differ in their structure, size and thermal properties. The motivations behind this study are multiple. The technological stakes related to the increased mastery of thermal management of current and future technologies are considerable, given the important correlation between the overall performance of a device and the efficient management of thermal gradients that develop within it. In particular, the performance of applications such as thermoelectric generators or phase-change memories are greatly enhanced when their architecture is based on materials with low thermal conductivities. From a fundamental point of view, the study of low dimensional materials, structured at scales comparable to the characteristic lengths defining heat transport, such as the mean free path of phonons or their wavelength, is of crucial importance in order to understand the mechanisms responsible for atypical thermal properties that are reported for low-dimensional and/or nanostructred materials.The experimental investigation of heat transport is carried out by means of electro-thermal methods, whose principles and foundations were particularly detailed. In particular, the 3ω method has been implemented to measure the thermal conductivity of bulk materials, thin films down to 17 nm thick, as well as thermal boundary resistances present in multilayer systems. We were able to demonstrate a reduction of more than a factor of 3 in the thermal conductivity of a crystalline germanium matrix with crystalline spherical nano-inclusions having an average diameter of 16 nm, compared to its non-nanostructured counterpart. The reduction of the thermal conductivity of this nano-structured material is attributed to phonon scattering by the spherical nano-inclusions, as well as the inter-inclusion distance, which plays an important role in reducing the mean free path of heat carriers in this heterogeneous material. A reduction in thermal conductivity by a factor of 5 is also observed in another germanium-based nanostructured material, GeTe, after the introduction of carbon -- a reduction that can be explained by the presence of nano-sized grains surrounded by amorphous carbon.The versatility of the 3ω method has allowed us to quantify the contribution of thermal boundary resistances for systems such as Pt/AI₂O₃/germanium, Pt/Ai₂O₃/sapphire or Pt/SiN/Si. Our findings indicate that the thermal boundary resistance at the AI₂O₃/germanium interface can contribute substantially to the overall thermal resistance of a multilayer system, which may be detrimental if applications based on structures with this type of interface are considered. Finally, anisotropic thermal properties have been experimentally studied on a sapphire substrate, using the 2ω method
8

Ousten, Jean-Pierre. "Etude du comportement au vieillissement des interfaces thermiques pour modules électroniques de puissance dédiés à des applications transports." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00910948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le cadre des applications transports, et plus particulièrement de "l'avion plus électrique", avec une demande toujours plus présente de réduction d'encombrement et de poids, la tendance est à l'intégration de plus en plus poussée des convertisseurs statiques. L'augmentation de leur densité de puissance et celle des contraintes thermiques, induites par l'environnement dans lequel ces structures sont localisées, deviennent de plus en plus critiques. La gestion thermique de ces dispositifs est assurée par des systèmes de refroidissement sur lesquels sont montés les composants semi-conducteurs via un matériau d'interface thermique. Une gestion performante sera obtenue par la diminution de la résistance thermique globale entre les éléments dissipatifs et le milieu ambiant grâce en autre à l'amélioration du système de refroidissement et des propriétés thermiques des matériaux constituant le module. Or cette interface est un point délicat du transfert de chaleur car elle peut représenter plusieurs dizaines de pourcents de la résistance thermique globale. Elle nécessite donc une connaissance approfondie de son comportement aux sollicitations thermiques. Après un état de l'art sur les matériaux d'interfaces thermiques et les méthodes de caractérisation des propriétés thermophysiques des matériaux, nous proposons la mise en œuvre d'outils expérimentaux et mathématiques permettant de suivre l'éventuelle évolution de matériaux d'interfaces utilisés en électronique de puissance au cours d'un vieillissement par cyclage en température. Pour cela, deux méthodes sont présentées. La première repose sur la mesure de la résistance thermique des interfaces en régime stationnaire avec un transfert de chaleur monodimensionnel alors que la seconde, basée sur une caractérisation transitoire thermique d'un système, permet d'en identifier les constantes de temps et le réseau Résistance-Capacité du système testé. Des travaux de simulations numériques ont été menés sur les deux types de bancs expérimentaux, d'un côté pour pouvoir évaluer les pertes thermiques latérales du banc statiques, de l'autre côté pour montrer qu'il est bien possible de détecter une variation de la résistance thermique d'un matériau d'interface par l'analyse de l'impédance thermique.
9

Alaili, Kamal. "Transport de chaleur dans les nano-couches minces excitées par une source laser d'intensité modulée." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail, divisé en deux parties principales, porte sur l’étude du transport de chaleur dans les nano-couches excitées par une source laser d'intensité modulée. Dans la première partie, nous exploitons la solution analytique de l’équation de transport de Boltzmann appliquée aux phonons pour décrire les variations de la température et du flux de chaleur dans les films minces diélectriques excités par un laser d’intensité modulée. Cette dernière solution nous permet de modéliser le comportement de la résistance thermique d’interface (RTI) entre deux couches diélectriques en fonction de la nature du régime du transport des phonons et de la fréquence de modulation. Dans le régime stationnaire, nous montrons que cette résistance d’interface présente un caractère non-intrinsèque et asymétrique par rapport aux propriétés des deux couches. En plus, elle devient très importante quand le régime du transport des phonons est balistique. Nos résultats sont en bon accord avec le modèle DMM dans le régime balistique, tandis que l’écart entre les deux modèles ne dépasse pas 16% dans le régime diffusif. Cependant, en régime dynamique, la RTI atteint son maximum à une fréquence caractéristique dans la limite diffusive. L’expression de cette fréquence caractéristique pourrait servir à déterminer le libre parcours moyen et le temps de relaxation des phonons dominants de la couche d’épaisseur finie en comparant les données expérimentales aux résultats théoriques. Dans la seconde partie, nous proposons trois différentes méthodes pour extraire simultanément la diffusivité et la conductivité thermiques d’une couche finie en se basant sur l’équation de la chaleur de Fourier. L’idée est d’utiliser l’expression exacte du profil de température à la face avant lorsque celle-ci est excitée par un flux thermique modulé, tandis que la face arrière peut être maintenue à trois différentes conditions : température modulée, flux thermique modulé où température constante. Nous déterminons les expressions des fréquences de modulation auxquelles le profil de température atteint ses premiers maximum et minimum. La combinaison de ces fréquences caractéristiques avec le rapport entre les premiers maximum et minimum de la température, conduit ainsi à la détermination de la diffusivité et de la conductivité thermiques
This work, separated into two main parts, deals with the study of heat transport in nano-layers excited by a laser beam with modulated intensity. In the first part, we exploit the analytical solution of the phonon Boltzmann transport equation to describe the variations of temperature and heat flux in thin dielectric films excited by a laser beam of modulated intensity. This last solution allows us to model the behavior of the interface thermal resistance (ITR) between two dielectric layers according to the nature of the phonon transport regime and the modulation frequency. In the steady state regime, we show that this interface resistance has a non-intrinsic and asymmetric character with regard to the two layers properties. In addition, it becomes very important when the phonon transport regime is ballistic. Our results are in good agreement with the DMM in the ballistic regime, while they differ by about 16% in the diffusive regime. However, in the dynamical regime, we mainly show that in the diffusive regime, the ITR reaches a maximum at a characteristic modulation frequency. The expression of this characteristic frequency can thus be used to determine the dominant phonons mean free path and relaxation time through the comparison of the theoretical model and the experimental data. In the second part, we propose three different ways to extract simultaneously the thermal diffusivity and conductivity of a finite layer based on the Fourier heat equation. The idea is to use the exact expression of the temperature profile at the front surface of the thin layer when the latter is excited by a periodic heat flux, while the rear surface can be maintained at one of three different types of boundary conditions: modulated periodic heat flux, modulated temperature, or constant temperature. We determine the expressions of the modulation frequencies at which the front surface temperature reaches its first maximum and first minimum. The combination of these characteristic frequencies with the ratio between the first maximum and the first minimum of the temperature, thus leads to the determination of the diffusivity and thermal conductivity
10

Batkam, Hemo Serge. "Thermique multidomaines en simulation numérique du remplissage 3D." Paris, ENMP, 2002. http://www.theses.fr/2002ENMP0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Du fait des caractéristiques spécifiques des polymères fondus (forte dissipation d’énergie mécanique, faible conductivité thermique, thermodépendance de la viscosité, chocs thermiques aux parois du moule), la modélisation et la résolution du problème thermique constituent un enjeu majeur dans la simulation numérique du procédé d’injection. Pour s’affranchir des problèmes d’instabilités engendrés par les approches de Galerkin standard, nous avons proposé dans ce travail une méthode originale basée sur une technique d’éléments finis espace-temps discontinus. L’interpolation spatiale consiste en l’utilisation d’éléments mixtes de bas ordre P0/P0+ en température/flux de chaleur. En temps, la température et le flux sont interpolés par des polynômes de degré n. La formulation spatio-temporelle résultante est locale et facile à implémenter. Elle a révélé de bonnes propriétés de stabilité, de robustesse, et est apparue efficace pour traiter simultanément des problèmes à convection dominante et des problèmes à diffusion dominante. Rapide, elle a permis de réduire considérablement les temps de calcul par rapport aux approches explicites. Une difficulté supplémentaire pour prédire correctement les transferts thermiques dans le polymère est la détermination de conditions aux limites réalistes à la paroi de la cavité. D’où l’intérêt de les repousser plus loin, à l’extérieur des outillages ou dans les canaux de régulation. Nous avons proposé un schéma numérique qui permet de prendre en compte la thermique des domaines environnants la cavité (approche multidomaines). Ce schéma ne nécessite pas la coïncidence des maillages à l’interface entre les différents domaines. Un traitement spécial aux interfaces permet de gérer naturellement les échanges thermiques entre deux domaines en contact, sans qu’il soit nécessaire de spécifier un coefficient de transfert à l’interface. L’ensemble des méthodes numériques développées ont été validées sur des solutions analytiques, puis implémentées dans le solveur thermique du logiciel REM3D®. Plusieurs exemples de remplissage 3D complexes, incluant un couplage thermomécanique dans la cavité, et éventuellement une thermique du moule et des inserts dans la cavité (injection/surmoulage) sont proposés
Solving the thermal problem is a key point for the numerical simulation of injection molding. The main causes of the numerical difficulties encountered by classical Galerkin techniques are the specific characters of molten polymers: high energy dissipation, low thermal conductivity, thermal shocks at the mold wall, thermal dependence of rheology. In this contribution, we have developed a space-time finite element method to solve the heat equation. A discontinuous Galerkin technique using P0/P0+ elements is proposed for the steady problem. The transient problem is treated with a discontinuous high order finite element in time method. The so-built scheme is local and easy to implement. It reveals good properties of stability, robustness and speed. Its appears to be efficient both for convection dominant and diffusion dominant equations, and is therefore suitable for injection molding process. Another difficulty when modelling the thermal exchanges in the polymer is to define accurate boundary conditions at the cavity frontier. We have investigated a numerical scheme which allows to couple the computations in the polymer with thermal computations in domains surrounding the cavity (multidomain approach). This scheme does not require coincident meshes between the domains. A specific processing at the interfaces guarantees natural thermal exchanges between two domains in contact, with no regard of any particular heat exchange coefficient specified at the interface. All the proposed methods have been validated through analytic examples, then integrated to the thermal solver of REM3D® software. Several examples of complex 3D mold filling, including thermomechanical coupling in the cavity, and possibly thermal coupling in the mold or in inserts (overmolding injection process) are given

До бібліографії