Дисертації з теми "Convergence theories"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Convergence theories".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Dillon, Andrew. "Artifacts as theories: Convergence through user-centered design." Medford, N.J.: ASIS, 1995. http://hdl.handle.net/10150/105923.
Повний текст джерелаNicholls, Jennifer Ann. "Optimization and the convergence of perturbation series." Thesis, Durham University, 1990. http://etheses.dur.ac.uk/6148/.
Повний текст джерелаArrignon, Mehdi. "Inciter au travail : la convergence des instruments, cadres cognitifs et objectifs des réformes sociales "actives" dans le contexte de la Stratégie Européenne pour l'Emploi (Espagne, France, Pays-Bas)." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00952618.
Повний текст джерелаPanicker, Rekha Manoj. "Some general convergence theorems on fixed points." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013112.
Повний текст джерелаMano, Pascal. "Vitesse de convergence dans les theoremes limite fonctionnels." Paris 6, 1988. http://www.theses.fr/1988PA066388.
Повний текст джерелаGAMET, CATHERINE. "Théorèmes de convergence en moyenne et entropie metrique en theorie ergodique." Université Louis Pasteur (Strasbourg) (1971-2008), 1996. http://www.theses.fr/1996STR13213.
Повний текст джерелаTiger, Norkvist Axel. "An investigation concerning the absolute convergence of Fourier series." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129363.
Повний текст джерелаBégyn, Arnaud. "Generalized quadratic variations of gaussian processes : limits theorems and applications to fractional processes." Toulouse 3, 2006. http://www.theses.fr/2006TOU30058.
Повний текст джерелаIf X is a fractional process, there exists a parameter H(X), which may be a vector or a function. This parameter is related to the properties of self-similarity of X and to the regularity of its trajectories. Therefore it is a relevant quantity which must be taken into account in a statistical study. The purpose of our PhD thesis is to yield conditions on a Gaussian processes X, which are satisfied in the case of fractional processes, and which enable to find a normalization returning its second order quadratic variation almost surely convergent and asymptotically normal. As in the case of the fractional Brownian motion, our work enables to construct a “good” estimation of some parameters of the considered fractional processes. For that we consider the usual statistic associated to the second order quadratic variation
Sain, Soumit. "Information communication and technology convergence and price strategies : perspective from economic regulation and policy /." Marburg : Tectum-Verl, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2760301&prov=M&dok_var=1&dok_ext=htm.
Повний текст джерелаDawson, C. Bryan (Charles Bryan). "Convergence of Conditional Expectation Operators and the Compact Range Property." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc332473/.
Повний текст джерелаFujioka, Tadashi. "Fibration theorems for collapsing Alexandrov spaces." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263435.
Повний текст джерелаSelig, Thomas. "Convergence de cartes et tas de sable." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0286/document.
Повний текст джерелаThis Thesis studies various problems located at the boundary between Combinatorics and Probability Theory. It is formed of two independent parts. In the first part, we study the asymptotic properties of some families of \maps" (from a non traditional viewpoint). In thesecond part, we introduce and study a natural stochastic extension of the so-called Sandpile Model, which is a dynamic process on a graph. While these parts are independent, they exploit the same thrust, which is the many interactions between Combinatorics and Discrete Probability, with these two areas being of mutual benefit to each other. Chapter 1 is a general introduction to such interactions, and states the main results of this Thesis. Chapter 2 is an introduction to the convergence of random maps. The main contributions of this Thesis can be found in Chapters 3, 4 (for the convergence of maps) and 5 (for the Stochastic Sandpile model)
Huschens, Stefan. "Theorie und Methodik der Statistik." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-222630.
Повний текст джерелаat, Andreas Cap@esi ac. "Markov Operators and the Nevo--Stein Theorem." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1077.ps.
Повний текст джерелаPionke, Christopher. "Convergence of finite elements based on the hu-washizu variational theorem with minimal compatibility." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/19577.
Повний текст джерелаGuimier, Alain. "Algorithmes a strategie aleatoire : theorie et aspects numeriques : applications a la stabilite d'iterations perturbees vitesses de convergence." Aix-Marseille 1, 1988. http://www.theses.fr/1988AIX11172.
Повний текст джерелаTürck, Matthias. "European regional convergence : an empirical analysis of the enlarged European Union /." Hamburg : Kovač, 2007. http://www.gbv.de/dms/zbw/544004175.pdf.
Повний текст джерелаBernergård, Zandra. "Connection between discrete time random walks and stochastic processes by Donsker's Theorem." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48719.
Повний текст джерелаPeng, Yan. "Combining SMT with theorem proving for AMS verification : analytically verifying global convergence of a digital PLL." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52978.
Повний текст джерелаScience, Faculty of
Computer Science, Department of
Graduate
Matsumoto, K., and A. Laurinčikas. "Joint value-distribution theorems on Lerch zeta-functions. II." Kluwer Academic Publishers-Consultants Bureau, 2006. http://hdl.handle.net/2237/20426.
Повний текст джерелаSzalvai, Eva. "Emerging Forms of Globalization Dialectics: Interlocalization, a New Praxis of Power and Culture in Commercial Media and Development Communication." Bowling Green, Ohio : Bowling Green State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=bgsu1214241605.
Повний текст джерелаŽarinskaitė, Jurgita. "Konvergavimo greičio tyrimas daugiamačių ekstremaliųjų reikšmių perkėlimo teoremoje." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_101336-84799.
Повний текст джерелаNarijauskaitė, Birutė. "Ekstremaliųjų reikšmių konvergavimo greičio tyrimas perkėlimo teoremose." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_232550-70259.
Повний текст джерелаLiu, Yating. "Optimal Quantization : Limit Theorem, Clustering and Simulation of the McKean-Vlasov Equation." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS215.
Повний текст джерелаThis thesis contains two parts. The first part addresses two limit theorems related to optimal quantization. The first limit theorem is the characterization of the convergence in the Wasserstein distance of probability measures by the pointwise convergence of Lp-quantization error functions on Rd and on a separable Hilbert space. The second limit theorem is the convergence rate of the optimal quantizer and the clustering performance for a probability measure sequence (μn)n∈N∗ on Rd converging in the Wasserstein distance, especially when (μn)n∈N∗ are the empirical measures with finite second moment but possibly unbounded support. The second part of this manuscript is devoted to the approximation and the simulation of the McKean-Vlasov equation, including several quantization based schemes and a hybrid particle-quantization scheme. We first give a proof of the existence and uniqueness of a strong solution of the McKean- Vlasov equation dXt = b(t, Xt, μt)dt + σ(t, Xt, μt)dBt under the Lipschitz coefficient condition by using Feyel’s method (see Bouleau (1988)[Section 7]). Then, we establish the convergence rate of the “theoretical” Euler scheme and as an application, we establish functional convex order results for scaled McKean-Vlasov equations with an affine drift. In the last chapter, we prove the convergence rate of the particle method, several quantization based schemes and the hybrid scheme. Finally, we simulate two examples: the Burger’s equation (Bossy and Talay (1997)) in one dimensional setting and the Network of FitzHugh-Nagumo neurons (Baladron et al. (2012)) in dimension 3
Hochhaus, Andreas. "Existenz-, Konvergenz- und Vergleichssätze für verallgemeinerte Riccatische Matrix-Gleichungen Existence, convergence and comparison theorems for generalized matrix Riccati equations." Gerhard-Mercator-Universitaet Duisburg, 2002. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-07222002-160331/.
Повний текст джерелаKoukkous, Abdellatif. "Comportement hydrodynamique de différents processus de zéro range." Rouen, 1997. http://www.theses.fr/1997ROUES051.
Повний текст джерелаBarrera, David. "Quenched Asymptotics for the Discrete Fourier Transforms of a Stationary Process." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460652609.
Повний текст джерелаMismer, Romain. "Convergence et spike and Slab Bayesian posterior distributions in some high dimensional models." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC064.
Повний текст джерелаThe first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on the Spike and Slab prior to derive minimax convergence of the posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax constant is derived. The second main focus is the density estimation model using a special Polya tree prior where the variables in the tree construction follow a Spike and Slab type distribution. Adaptive minimax convergence in the supremum norm of the posterior distribution as well as a nonparametric Bernstein-von Mises theorem are obtained
Genienė, Danutė Regina. "Limit theorems for Lerch zeta-functions with algebraic irrational parameter." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2009~D_20100204_102902-68601.
Повний текст джерелаYra gautos Lercho dzeta funkcijos su algebriniu iracionaliuoju parametru ribinės teoremos silpno tikimybinių matų konvergavimo prasme. Yra įrodyta minėto tipo teorema kompleksinėje plokštumoje, jungtinė ribinė teorema Lercho dzeta funkcijų rinkiniui kompleksinėje plokštumoje ir teorema analizinių funkcijų erdvėje. Įrodytos teoremos charakterizuoja Lercho dzeta funkcijų asimptotinį elgesį ir gali būti taikomos šios funkcijos universalumui tirti.
Ferrari, Luca Alberto Davide. "Approximations par champs de phases pour des problèmes de transport branché." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX049/document.
Повний текст джерелаIn this thesis we devise phase field approximations of some Branched Transportation problems. Branched Transportation is a mathematical framework for modeling supply-demand distribution networks which exhibit tree like structures. In particular the network, the supply factories and the demand location are modeled as measures and the problem is cast as a constrained optimization problem. The transport cost of a mass m along an edge with length L is h(m)xL and the total cost of a network is defined as the sum of the contribution on all its edges. The branched transportation case consists with the specific choice h(m)=|m|^α where α is a value in [0,1). The sub-additivity of the cost function ensures that transporting two masses jointly is cheaper than doing it separately. In this work we introduce various variational approximations of the branched transport optimization problem. The approximating functionals are based on a phase field representation of the network and are smoother than the original problem which allows for efficient numerical optimization methods. We introduce a family of functionals inspired by the Ambrosio and Tortorelli one to model an affine transport cost functions. This approach is firstly used to study the problem any affine cost function h in the ambient space R^2. For this case we produce a full Gamma-convergence result and correlate it with an alternate minimization procedure to obtain numerical approximations of the minimizers. We then generalize this approach to any ambient space and obtain a full Gamma-convergence result in the case of k-dimensional surfaces. In particular, we obtain a variational approximation of the Plateau problem in any dimension and co-dimension. In the last part of the thesis we propose two models for general concave cost functions. In the first one we introduce a multiphase field approach and recover any piecewise affine cost function. Finally we propose and study a family of functionals allowing to recover in the limit any concave cost function h
Pinkevičiūtė, Laura. "Konvergavimo greičių įverčiai maksimumų perkėlimo teoremoje." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_142205-15799.
Повний текст джерелаAsymptotics of maxima of independent and identically distributed random variables (i. i. d.) is presented in the paper. We will research the cases when the distributions are max – stable, distributions are generalized Pareto and the size of set of independent random variables is random. The non – uniform and uniform estimates of the rate of convergence for transfer theorem are obtained in this scheme. These estimations improve the result given in A. Aksomaitis (1999) and Gnedenko (1982).
Widman, Linnea. "Från det imaginära till normala familjer : Analytiska konvergenser." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-59771.
Повний текст джерелаThis report will describe four different types of convergence. The types described are pointwise, local uniformly, uniformly and normal convergence. The different convergences are explored in a way of how they relate to each other. Finally this report will also investigate how this applies to normal families and the theories of Arzela/Ascoli, Montel and Runge. We will here see examples of how wrong it really can go for pointwise convergent sequences. They do usually not have a limit that is analytic but from both Example 3.19 and Corollary 3.23 we will see that they give functions that in fact are analytic almost everywhere.
EL, MACHKOURI Mohamed. "Theoremes limite pour les champs et les suites stationnaires de variables aleatoires reelles." Phd thesis, Université de Rouen, 2002. http://tel.archives-ouvertes.fr/tel-00002365.
Повний текст джерелаMirebrahimi, Seyedmeghdad. "Interacting stochastic systems with individual and collective reinforcement." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2274/document.
Повний текст джерелаThe Polya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) almost sure (a.s.) time-limit.The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. Many stochastic models for applications are based on reinforced processes, like urns with their use in adaptive design for clinical trials or economy, stochastic algorithms with their use in non parametric estimation or optimisation. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates. In the case the reinforcement rates are like 1/n, these reinforcements are of Polya or Friedman type as in urn contexts and may thus lead to limits which may be random or not. We state two kind of mathematical results. Different parameter regimes needs to be considered: type of reinforcement rule (Polya/Friedman), strength of the reinforcement. We study the time-asymptotics and prove that a.s. convergence always holds. Moreover all the components share the same time-limit (synchronization). The nature of the limit (random/deterministic) according to the parameters' regime is considered. We then study fluctuations by proving central limit theorems. Scaling coefficients vary according to the regime considered. This gives insights into the different rates of convergence
David, Manolis. "The Henstock–Kurzweil Integral." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166430.
Повний текст джерелаSkerstonaitė, Santa. "Joint universality for periodic Hurwitz zeta-functions." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090827_124913-17749.
Повний текст джерелаMagistro darbe yra nagrinėjamas Hurvico dzeta funkcijų rinkinio jungtinis universalumas. Yra įrodytos dvi jungtinės universalumo teoremos. Pirmoji teorema tvirtina, kad jei aibė L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno, tai periodinės Hurvico dzeta funkcijos yra universalios. Ši teorema žymiai susilpnina sąlygas, kurioms esant, buvo gautas analogiškas rezultatas A. Javtoko ir A. Laurinčiko 2008 m. darbe. Antroje teoremoje yra nagrinėjamas atvejis, kai kiekvieną skaičių alpha atitinka periodinių sekų rinkinys. Kai sistema L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno ir galioja vieno rango tipo sąlyga, silpnesnė negu A. Laurinčiko darbe (2008), tai periodinių Hurvico dzeta funkcijų rinkinys yra taip pat universalus.
Hidani, Abdelkader. "Modélisation des écoulements diphasiques en milieux poreux à plusieurs types de rochesde roches." Saint-Etienne, 1993. http://www.theses.fr/1993STET4029.
Повний текст джерелаPassos, Frederico Salgueiro. "O teorema das seções de Lévy aplicado à séries temporais correlacionadas não estacionárias: uma análise da convergência gaussiana em sistemas dinâmicos." Universidade Federal de Alagoas, 2014. http://www.repositorio.ufal.br/handle/riufal/1725.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Processos não-estacionários com interações fracas aparecem como problemas desafiadores em sistemas complexos em física. Uma questão interessante é como quantificar a taxa de convergência para o comportamento gaussiano em séries temporais heteroscedásticas, sem uma variância única em toda a série, provenientes de sistemas financeiros, reescaladas com os primeiros momentos estacionários mas com uma multifractalidade não estacionária e segundos momentos que possuem uma correlação do longo alcance e verificar o mesmo mecanismo também em séries temporais geradas a partir de um movimento Browniano Fracionado onde a correlação da série depende de um parâmetro ajustável. Aqui é usada uma extensão do teorema das seções de Lévy. Analisando as propriedades estatísticas e multifractais de uma série temporal heteroscedástica e encontrando que as seções de Lévy fornece uma convergência mais rápida para o comportamento gaussiano relativo à convergência das tradicionais somas de variáveis, o teorema do limite central. Para entender essa transição foram utilizados vários testes estatísticos que forneceram dados suficientes sobre o comportamento de convergência. Também observou-se que os sinais reescalados mantêm suas propriedades multifractais mesmo depois de atingirem um regime que parece ser um regime gaussiano.
Genienė, Danutė Regina. "Lercho dzeta funkcijų su algebriniu iracionaliuoju parametru ribinės teoremos." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2009~D_20100204_102916-44120.
Повний текст джерелаLimit theorems in the sense of weak convergence of probability measures for the Lerch zeta-function with algebraic irrational parameter are obtained. A theorem of mentioned type on the complex plane, a joint limit theorem for a collection of Lerch zeta-functions on the complex plane as well as a limit theorem in the space of analytic functions are proved. The theorems obtained characterize the asymptotic behaviour of the Lerch zeta-function and can be applied in the investigation of the universality of that function.
Castiel, Eyal. "Study of QB-CSMA algorithms." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0038.
Повний текст джерелаPerformance of wireless networks, in which users share the air as support for their communications is strongly limited by electromagnetic interference. That is, two users close to each other trying to send a message on the same frequency will experience interference between their messages, eventually leading to the loss of some information. It is then crucial to develop medium access protocols aiming to limit the occurrence of such a phenomena by choosing in an effective (and distributed) manner which station is allowed to transmit. From a scientific point of view, it is a difficult issue which has had some attention from the community in the field of computer science and applied probability in the past 30 years. Recently, a new class of medium access protocols - called adaptive CSMA - emerged and seem quite promising: for example, it has been shown that they exhibit a desirable property: throughput optimality (maximum stability). The goal of this project is to increase the knowledge we have the adaptive CSMA (or CSMA QB, for Queue Based) which is to this day quite limited (notably in the expected waiting time of a request arriving in the system, called delay). Our goal will be to prove theoric results to enhance our understanding of the throughput/delay trade-off
Martins, Tiberio Bittencourt de Oliveira. "Newton's methods under the majorant principle on Riemannian manifolds." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4847.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.
Blandin, Vassili. "Estimation de paramètres pour des processus autorégressifs à bifurcation." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00842856.
Повний текст джерелаNdao, Mamadou. "Estimation de la vitesse de retour à l'équilibre dans les équations de Fokker-Planck." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV036/document.
Повний текст джерелаThis thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data
Paditz, Ludwig. "Über die Annäherung der Verteilungsfunktionen von Summen unabhängiger Zufallsgrößen gegen unbegrenzt teilbare Verteilungsfunktionen unter besonderer Beachtung der Verteilungsfunktion der standardisierten Normalverteilung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-114206.
Повний текст джерелаWith the presented work new contributions to basic research in the field of limit theorems of probability theory are given. Limit theorems for sums of independent random variables taking on the most diverse lines of research in probability theory an important place in modern times and are no longer only of theoretical interest. In the work results are presented to newer problems on the summation theory of independent random variables, at first time in the fifties and sixties of the 20th Century appeared in the literature and have been studied in the past few years with great interest. International two main directions have emerged in the theory of limit theorems: Firstly, the questions on the convergence speed of a cumulative distribution function converges to a predetermined limit distribution function, and on the other hand the questions on an error estimate for the limit distribution function at a finite summation process. First indefinite divisible limit distribution functions are considered, then the normal distribution is specifically discussed as a limit distribution. As characteristic parameters both moments or one-sided moments or pseudo-moments are used. The error estimates are stated both in uniform as well as non-uniform residual bounds including a description of the occurring absolute constants. Both the method of characteristic functions as well as direct methods (convolution method) can be further expanded as proof methods. Now for the error estimate, 1965 given by Bikelis, was the first time to estimate the appearing absolute constant C with C = 114.667 numerically. Furthermore, in the work of so-called limit theorems for moderate deviations are studied. Here also remainder estimates are derived for the first time. In recent years to the proof of limit theorems the chosen way of the convolution of distribution functions proved to be groundbreaking and determined the development of both the theory of limit theorems for moderate and large deviations as well as the investigation into the nonuniform estimates in the central limit theorem significantly. The convolution method is in the present thesis, the main instrument of proof. Thus, it was possible to obtain a series of results and obtain new numerical results in particular by means of electronic data processing
Zaïdi, Abdelhamid. "Séparation aveugle d'un mélange instantané de sources autorégressives gaussiennes par la méthode du maximum de vraissemblance exact." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10233.
Повний текст джерелаMaués, Bartira. "Uma introdução à Cp (X)." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-30082015-180119/.
Повний текст джерелаIn this work we study some properties of the space of continuous functions endowed with the topology of pointwise convergence. We begin by studying the space Cp(X) in general terms, verifying that the main topological properties are valid in Cp(X), using duality theorems between X and Cp(X). Next we study the relationship between the topological structure of X and the algebraic as well as topological structure of Cp(X), in which the Nagata theorem theorem is essential. We observe some properties of X, which are preserved by l-equivalence or t-equivalence, i.e., which are respectively determined either by the linear topological structure of Cp(X) or by its topological one. Finally we study in which conditions Cp(X) is a Lindelöf space. We conclude with the proof of Okunev that the Lindelöf number of Cp(X) is equal to the Lindelöf number of Cp(X)xCp(X), for strongly zero-dimensional spaces X.
Paditz, Ludwig. "Über eine Fehlerabschätzung im zentralen Grenzwertsatz." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-112986.
Повний текст джерелаWe consider a sequence of centered and independent random variables with moments of order m, 2
Paditz, Ludwig. "Abschätzungen der Konvergenzgeschwindigkeit im zentralen Grenzwertsatz." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-112958.
Повний текст джерелаThe paper is a generalization of the results, published by the author in Informationen/07; 1976,05. Let F_n(x) be the cdf of X_1+X_2+...+X_n, where X_1, X_2, ...,X_n are non iid random variables with m-th absolute moment c_m, m>2, and Phi the cdf of the unit normal law. Explicit universal constants L_m are computed such that we have some error estimates in the nonuniform central limit theorem. A special case is the nonuniform error bound by A.BIKELIS (1966) in the case of existence of third absolute moments. Furthermore limit theorems with assumption of onesided moments are considered. Some references are given
Paditz, Ludwig. "Über mittlere Abweichungen." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-112977.
Повний текст джерелаIn this paper we study necessary and sufficient conditions for the validity of limit theorems on moderate deviations. Usually x-zones for moderate deviations are called in the terminilogy by YU.V.LINNIK (1971) "very narrow" zones of integral normal attraction. Moreover we analyse the remainder term appearing in the asymptotic relations. Informations on the order of the rate of convergence are given. Earlier results by several authors are generalized. Finally some references are given
Larsson, David. "Generalized Riemann Integration : Killing Two Birds with One Stone?" Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96661.
Повний текст джерелаÄnda sedan Cauchys tid har integrationsteori i huvudsak varit ett försök att åter finna Newtons Eden. Under den idylliska perioden [. . . ] var derivator och integraler [. . . ] olika sidor av samma mynt.-Peter Bullen, citerad i [24] Under de senaste århundradena har integrationsteori genomgått många förändringar och framförallt har det funnits en spänning mellan Riemanns och Lebesgues respektive angreppssätt till integration. Riemanns definition är ofta den första integral som möter en student pa grundutbildningen, medan Lebesgues integral är kraftfullare. Eftersom Lebesgues definition är mer komplicerad introduceras den först i forskarutbildnings- eller avancerade grundutbildningskurser. Integralen som framställs i det här examensarbetet utvecklades av Ralph Henstock och Jaroslav Kurzweil. Genom att på ett enkelt sätt ändra kriteriet for integrerbarhet i Riemanns definition finner vi en kraftfull integral med många av Lebesgueintegralens egenskaper. Vidare utvidgar den generaliserade Riemannintegralen klassen av integrerbara funktioner i jämförelse med Lebesgueintegralen, medan vi samtidigt erhåller en karaktärisering av Lebesgueintegralen i termer av absolutintegrerbarhet. Eftersom klassen av generaliserat Riemannintegrerbara funktioner är större än de absolutintegrerbara funktionerna blir vissa satser mer omständiga att bevisa i jämforelse med eleganta resultat i Lebesgues teori. Därtill förloras vissa viktiga egenskaper vid sammansättning av funktioner och även möjligheten till abstraktion försvåras. Integralen ska alltså ses som ett komplement till Lebesgues definition och inte en ersättning.