Добірка наукової літератури з теми "Cosmic rays Measurement"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cosmic rays Measurement".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cosmic rays Measurement":

1

Rossetto, L., S. Buitink, A. Corstanje, J. E. Enriquez, H. Falcke, J. R. Hörandel, A. Nelles, et al. "Measurement of cosmic rays with LOFAR." Journal of Physics: Conference Series 718 (May 2016): 052035. http://dx.doi.org/10.1088/1742-6596/718/5/052035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mockler, Daniela. "Measurement of the cosmic ray spectrum with the Pierre Auger Observatory." EPJ Web of Conferences 209 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201920901029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The flux of ultra-high energy cosmic rays above 3×1017 eV has been measured with unprecedented precision at the Pierre Auger Observatory. The flux of the cosmic rays is determined by four different measurements. The surface detector array provides three data sets, two formed by dividing the data into two zenith angle ranges, and one obtained from a nested, denser detector array. The fourth measurement is obtained with the fluorescence detector. By combing all four data sets, the all-sky flux of cosmic rays is determined. The spectral features are discussed in detail and systematic uncertainties are addressed.
3

Norman, Colin A. "The Highest Energy Cosmic Rays." Symposium - International Astronomical Union 175 (1996): 291–96. http://dx.doi.org/10.1017/s0074180900080864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The current data on the highest energy cosmic rays (UHECRs) is discussed and an understanding of the origin of these particles is reviewed. New and proposed facilities for measurement of UHECRs, neutrinos and γ-rays can interestingly and significantly constrain the physics of the source origin. Cosmic magnetic field strengths are the most uncertain physical parameter.
4

Nozzoli, Francesco, and Cinzia Cernetti. "Beryllium Radioactive Isotopes as a Probe to Measure the Residence Time of Cosmic Rays in the Galaxy and Halo Thickness: A “Data-Driven” Approach." Universe 7, no. 6 (June 4, 2021): 183. http://dx.doi.org/10.3390/universe7060183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cosmic rays are a powerful tool for the investigation of the structure of the magnetic fields in the Galactic halo and the properties of the inter-stellar medium. Two parameters of the cosmic ray propagation models, the Galactic halo (half) thickness, H, and the diffusion coefficient, D, are loosely constrained by current cosmic ray flux measurements; in particular, a large degeneracy exists, with only H/D being well measured. The 10Be/9Be isotopic flux ratio (thanks to the 2 My lifetime of 10Be) can be used as a radioactive clock providing the measurement of cosmic ray residence time in a galaxy. This is an important probe with which to solve the H/D degeneracy. Past measurements of 10Be/9Be isotopic flux ratios in cosmic rays are scarce, and were limited to low energy and affected by large uncertainties. Here a new technique to measure 10Be/9Be isotopic flux ratio, with a data-driven approach in magnetic spectrometers is presented. As an example, by applying the method to beryllium events published via PAMELA experiment, it is now possible to determine the important 10Be/9Be measurement while avoiding the prohibitive uncertainties coming from Monte Carlo simulations. It is shown how the accuracy of PAMELA data strengthens the experimental indication for the relativistic time dilation of 10Be decay in cosmic rays; this should improve the knowledge of the H parameter.
5

HARARI, DIEGO. "MEASUREMENTS OF COSMIC RAYS AT THE HIGHEST ENERGIES WITH THE PIERRE AUGER OBSERVATORY." International Journal of Modern Physics D 20, no. 05 (May 20, 2011): 685–96. http://dx.doi.org/10.1142/s0218271811019037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Measurements with the Pierre Auger Observatory indicate with unprecedented statistics that the flux of cosmic rays is strongly suppressed above 4 × 1019 eV. The suppression is consistent with the prediction that cosmic rays with larger energies can only arrive from nearby sources due to their interaction with the cosmic microwave background, but could also be related to the efficiency of the acceleration processes at the sources. The Observatory has found independent evidence of the nearby extragalactic origin of cosmic rays with energy above ~6×1019 eV with a measurement of the fraction of arrival directions that correlate with the positions of active galactic nuclei within ~100 Mpc. This correlation does not identify active galaxies as the sites of origin, since their distribution traces the overall local matter distribution. We review recent measurements made with the Pierre Auger Observatory of the flux, anisotropy and composition of CRs.
6

An, Q., R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi, M. S. Cai, J. Chang, et al. "Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite." Science Advances 5, no. 9 (September 2019): eaax3793. http://dx.doi.org/10.1126/sciadv.aax3793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.
7

Kostunin, D., P. A. Bezyazeekov, N. M. Budnev, D. Chernykh, O. Fedorov, O. A. Gress, A. Haungs, et al. "Present status and prospects of the Tunka Radio Extension." EPJ Web of Conferences 216 (2019): 01005. http://dx.doi.org/10.1051/epjconf/201921601005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Tunka Radio Extension (Tunka-Rex) is a digital radio array operating in the frequency band of 30-80 MHz and detecting radio emission from air-showers produced by cosmic rays with energies above 100 PeV. The experimentis installed at the site of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) observatory and performs joint measurements with the co-located particle and air-Cherenkov detectors in passive mode receiving a trigger from the latter. Tunka-Rex collects data since 2012, and during the last five years went throughseveral upgrades. As a result the density of the antenna field was increased by three times since its commission. In this contribution we present the latest results of Tunka-Rex experiment, particularly an updated analysis and efficiency study, which have been applied to the measurement of the mean shower maximum as a function of energy for cosmic rays of energies up to EeV. The future plans are also discussed: investigations towards an energy spectrum of cosmic rays with Tunka-Rex and their mass composition using a combination of Tunka-Rex data with muon measurements by the particle detector Tunka-Grande.
8

Mariazzi, Analisa. "Highest energy particle physics with the Pierre Auger Observatory." International Journal of Modern Physics: Conference Series 31 (January 2014): 1460301. http://dx.doi.org/10.1142/s2010194514603019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Astroparticles offer a new path for research in the field of particle physics, allowing investigations at energies above those accesible with accelerators. Ultra-high energy cosmic rays can be studied via the observation of the showers they generate in the atmosphere. The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays, combining two complementary measurement techniques used by previous experiments, to get the best possible measurements of these air showers. Shower observations enable one to not only estimate the energy, direction and most probable mass of the primary cosmic particles but also to obtain some information about the properties of their hadronic interactions. Results that are most relevant in the context of determining hadronic interaction characteristics at ultra-high energies will be presented.
9

Oschlies, K., R. Beaujean, and W. Enge. "Measurement of low energy cosmic rays aboard Spacelab-1." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 12, no. 1-6 (January 1986): 407–9. http://dx.doi.org/10.1016/1359-0189(86)90620-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

DE MELLO NETO, J. R. T. "ULTRA HIGH ENERGY COSMIC RAYS WITH THE PIERRE AUGER OBSERVATORY." International Journal of Modern Physics: Conference Series 18 (January 2012): 221–29. http://dx.doi.org/10.1142/s2010194512008495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present the status and the recent measurements from the Pierre Auger Observatory. The energy spectrum is described and its features discussed. We report searches for anisotropy of cosmic rays arrival directions in large scales and through correlation with catalogues of celestial objects. The measurement of the cross section proton-air is discussed. Finally, the mass composition is addressed with the measurements of the variation of the depth of shower maximum with energy and with the muon density at ground.

Дисертації з теми "Cosmic rays Measurement":

1

Brobeck, Elina Stone Edward McKeown R. D. "Measurement of ultra-high energy cosmic rays with CHICOS /." Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-10192008-143041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moats, Anne Rosalie Myers. "LEAP: A balloon-borne search for low energy cosmic ray antiprotons." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The LEAP (Low-Energy Antiproton) experiment is a search for cosmic-ray antiprotons in the 120 MeV to 1.2 GeV kinetic energy range. The motivation for this project was the result announced by Buffington et al. (1981) that indicated an anomalously high antiproton flux below 300 MeV; this result has compelled theorists to propose sources of primary antiprotons above the small secondary antiproton flux produced by high energy cosmic-ray collisions with nuclei in the interstellar medium. LEAP consisted of the NMSU magnet spectrometer, a time-of-flight system designed at Goddard Space Flight Center, two scintillation detectors, and a Cherenkov counter designed and built at the University of Arizona. Analysis of flight data performed by the high-energy astrophysics group at Goddard Space Flight Center revealed no antiproton candidates found in the 120 MeV to 360 MeV range; 3 possible antiproton candidate events were found in the 500 MeV to 1.2 GeV range in an analysis done here at the University of Arizona. However, since it will be necessary to sharpen the calibration on all of the LEAP systems in order to positively identify these events as antiprotons, only an upper limit has been determined at present. Thus, combining the analyses performed at the University of Arizona and Goddard Space Flight Center, 90% confidence upper limits of 3.5 x 10⁻⁵ in the 120 MeV to 360 MeV range and 2.3 x 10⁻⁴ in the 500 MeV to 1.2 GeV range for the antiproton/proton ratio is indicated by the LEAP results. LEAP disagrees sharply with the results of the Buffington group, indicating a low antiproton flux at these energies. Thus, a purely secondary antiproton flux may be adequate at low energies.
3

吳本韓 and Pun-hon Ng. "Measurement of PeV cosmic rays extensive air showers at mountain altitude." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ng, Pun-hon. "Measurement of PeV cosmic rays extensive air showers at mountain altitude /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13781431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Behlmann, Matthew Daniel. "Measurement of helium isotopic composition in cosmic rays with AMS-02." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 137-145).
The isotopic composition of helium in cosmic ray fluxes provides valuable information about cosmic ray propagation through the Galaxy, which is of particular interest to indirect dark matter searches. Helium-3, mainly a secondary cosmic ray species, is primarily produced by spallation of heavier cosmic rays, such as primary helium-4, with interstellar matter. In six years of data taking, AMS has collected the largest available data set on fluxes of cosmic-ray helium. Events are selected to form a clean sample of galactic helium nuclei, for which velocity and rigidity give a measurement of particle mass that allows the measurement of relative isotope abundances. The resolution of measured mass is described in detail by template functions based on the underlying resolutions of the silicon tracker and ring-imaging Cerenkov detector measurements. This thesis presents a measurement of the cosmic ray helium isotope ratio 3 He/ 4He in the range 0.8-10 GeV/nucleon, as obtained through a template fitting approach on AMS data.
by Matthew Daniel Behlmann.
Ph. D.
6

Fleischhack, Henrike. "Measurement of the iron spectrum in cosmic rays with the VERITAS experiment." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Das Energiespektrum der kosmischen Strahlung bietet wichtige Hinweise auf ihren Ursprung und ihre Ausbreitung. Verschiedene Messtechniken müssen kombiniert werden, um den ganzen Energiebereich abdecken zu können: Direkte Messungen mit Teilchendetektoren bei niedrigen Energien sowie indirekte Messungen von Luftschauern bei hohen Energien. Dazu kommt die Messung von Photonen, hauptsächlich im GeV- und TeV-Bereich, die bei der Wechselwirkung von kosmischer Strahlung mit Materie oder elektromagnetischen Feldern entstehen. Im Folgenden werde ich zwei Studien dazu vorstellen, die beide auf Daten des abbildenden Tscherenkow-Teleskopes VERITAS beruhen. Erstens stelle ich eine Messung das Energiespektrums von Eisenkernen in der kosmischen Strahlung vor. Für die Bestimmung der Energie und Ankunftsrichtung der Primärteilchen benutze ich eine neuartige Template-Likelihood-Methode, die hier erstmals auf Eisenschauer angewendet wird. Zur Identifizierung der Eisenschauer benutze ich unter anderem das sogenannte direkte Tscherenkow-Licht, welches von geladenen Teilchen vor der ersten Wechselwirkung ausgestrahlt wird. Dazu kommt eine multivariate Klassifizierungsmethode, um den Verbleibenden Untergrund zu charakterisieren. Das so gemessene Energiespektrum von Eisen wird im Bereich von 20 TeV bis 500 TeV gut durch ein Potenzgesetz beschrieben. Zweitens beschreibe ich eine Suche nach Gammastrahlung oberhalb von 100 GeV von den drei Galaxien Arp 220, IRAS 17208-0014 und IC 342. Diese drei Galaxien haben hohe Sternentstehungsraten und daher viele Supernova-Überreste, welche kosmische Strahlung erzeugen. Diese wechselwirkt erwartungshalber mit den dichten Staubwolken in den Sternentstehungsgebieten und erzeugt Gammastrahlung. VERITAS konnte keine solche Gammastrahlung messen. Die daraus abgeleitete Höchstgrenze für die Luminosität schränkt theoretische Modelle der Erzeugung und Propagation von kosmischer Strahlung in der Galaxie Arp 220 ein.
The energy spectrum of cosmic rays can provide important clues as to their origin and propagation. Different experimental techniques have to be combined to cover the full energy range: Direct detection experiments at lower energies and indirect detection via air showers at higher energies. In addition to detecting cosmic rays at Earth, we can also study them via the electromagnetic radiation, in particular gamma rays, that they emit in interactions with gas, dust, and electromagnetic fields near the acceleration regions or in interstellar space. In the following I will present two studies, both using data taken by the imaging air Cherenkov telescope (IACT) VERITAS. First, I present a measurement of the cosmic ray iron energy spectrum. I use a novel template likelihood method to reconstruct the primary energy and arrival direction, which is for the first time adapted for the use with iron-induced showers. I further use the presence of direct Cherenkov light emitted by charged primary particles before the first interaction to identify iron-induced showers, and a multi-variate classifier to measure the remaining background contribution. The energy spectrum of iron nuclei is well described by a power law in the energy range of 20 to 500 TeV. Second, I present a search for gamma-ray emission above 100 GeV from the three star-forming galaxies Arp 220, IRAS 17208-0014, and IC342. Galaxies with high star formation rates contain many young and middle-aged supernova remnants, which accelerate cosmic rays. These cosmic rays are expected to interact with the dense interstellar medium in the star-forming regions to emit gamma-ray photons up to very high energies. No gamma-ray emission is detected from the studied objects and the resulting limits begin to constrain theoretical models of the cosmic ray acceleration and propagation in Arp 220.
7

Vasilas, Dragoş. "Measurement of light isotopes ratios in the cosmic rays with the IMAX balloon experiment." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972319077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, Wei Ph D. Massachusetts Institute of Technology. "Precision measurement of the boron to carbon ratio in cosmic rays with AMS-02." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 163-170).
A precision measurement of the Boron to Carbon ratio in cosmic rays is carried out in the range 1 GeV/n to 670 GeV/n using the first 30 months of flight data of AMS-02 located on the International Space Station. Above 20 GeV/n, it is the first accurate measurement. About 5 million clean Boron and Carbon nuclei are identified. The experimental and analysis challenges in achieving a high precision measurement are addressed. Boron is exclusively produced as a secondary particle by spallation from primary elements like Carbon in collisions with interstellar medium. The unprecedented precision and energy range of this measurement deepen the knowledge of cosmic ray propagation. Using this measurement, the diffusion coefficient in Gal-Prop model is determined to be (6.05 ± 0.05)10 28 cm2/s, and the Alfven velocity is (33.9 ± 1.0) km/s. This makes the prediction of secondary anti-proton background in dark matter search one order of magnitude more accurate.
by Wei Sun.
Ph. D.
9

Jia, Yi Ph D. Massachusetts Institute of Technology. "Measurement of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 113-122).
Secondary cosmic rays are mainly produced by the collisions of nuclei with the interstellar medium. The precise knowledge of secondary cosmic rays is important to understand the origin and propagation of cosmic rays in the Galaxy. In this thesis, my work on the precision measurement of secondary cosmic rays Li, Be, and B in the rigidity (momentum/charge) range 1.9 GV to 3.3 TV with a total of 5.4 million nuclei collected by AMS is presented. The total error on each of the fluxes is 3%-4% at 100 GV, which is an improvement of more than a factor of 10 compared to previous measurements. Unexpectedly, the results show above 30 GV, these three fluxes have identical rigidity dependence and harden identically above 200 GV. In addition, my work on a new method of the tracker charge measurement leads to significant improvements in the AMS charge resolution, thus paving the way for the unexplored flux measurements of high Z cosmic rays.
by Yi Jia.
Ph. D.
10

Tao, Li. "Measurement of the cosmic lepton and electron fluxes with the AMS detector on board of the International Space Station. Monitoring of the energy measurement in the calorimeter." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY016/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le Spectromètre Magnétique Alpha (AMS) est un détecteur de particules installé à bord de la Station Spatiale Internationale ; il enregistre des données depuis mai 2011. L'expérience a pour objectif d'identifier la nature des rayons cosmiques chargés et des photons et de mesurer leur flux dans la gamme d'énergie du GeV au TeV. Ces mesures permettent d'affiner les modèles de propagation de rayons cosmiques, d'effectuer une recherche indirecte de matière noire, et de chercher l'antimatière primordiale (anti-hélium). Dans ce mémoire, les données des premières années ont été utilisées pour mesurer les flux d'électrons et de leptons (électrons + positons) dans la gamme d'énergie de 0.5 GeV à 700 GeV. L'identification d'électrons nécessite une séparation électrons/protons de l'ordre de 104, obtenue par l'utilisation conjointe des estimateurs de différents sous-détecteurs d'AMS, en particulier du calorimètre électromagnétique (ECAL), du trajectomètre et du détecteur à radiation de transition (TRD). Dans cette analyse, les nombres d'électrons et de leptons sont estimés par un ajustement des distributions de l'estimateur du calorimètre et vérifiés en utilisant l'estimateur du TRD : 11 millions leptons ont été sélectionnés et analysés. Les incertitudes systématiques sont déterminées en variant les coupures de sélection et la procédure d'ajustement. L'acceptance géométrique du détecteur et les efficacités de sélection sont estimées grâce aux données de simulation. Les différences observées sur les échantillons de contrôle issus des données permettent de corriger la simulation. Les incertitudes systématiques associées à ces corrections sont établies en variant les échantillons de contrôle. Au total, à 100 GeV (resp. 700 GeV), l'incertitude statistique du flux de leptons est 2% (30%) et l'incertitude systématique est 3% (40%). Comme les flux se comportent globalement en loi de puissance en fonction de l'énergie, il est important de maitriser la calibration en énergie. Nous avons contrôlé in situ la mesure en énergie du calorimètre en comparant les électrons des données de vol et les données de tests en faisceaux, en utilisant en particulier la variable E/p ou p est la quantité de mouvement mesurée par le trajectomètre. Une deuxième méthode de calibration absolue à basse énergie, indépendante du trajectomètre, basée sur l'effet de la coupure géomagnétique a été développée. Deux modèles de prédiction de la coupure géomagnétique, l'approximation Störmer et le modèle IGRF, ont été testés et comparés. Ces deux méthodes ont permis de contrôler la calibration en énergie à 2% et de vérifier la stabilité des performances du calorimètre dans le temps
The Alpha Magnetic Spectrometer (AMS) is a particle detector installed on the International Space Station; it starts to record data since May 2011. The experiment aims to identify the nature of charged cosmic rays and photons and measure their fluxes in the energy range of GeV to TeV. These measurements enable us to refine the cosmic ray propagation models, to perform indirect research of dark matter and to search for primordial antimatter (anti-helium). In this context, the data of the first years have been utilized to measure the electron flux and lepton flux (electron + positron) in the energy range of 0.5 GeV to 700 GeV. Identification of electrons requires an electrons / protons separation power of the order of 104, which is acquired by combining the information from different sub-detectors of AMS, in particular the electromagnetic calorimeter (ECAL), the tracker and the transition radiation detector (TRD). In this analysis, the numbers of electrons and leptons are estimated by fitting the distribution of the ECAL estimator and are verified using the TRD estimator: 11 million leptons are selected and analyzed. The systematic uncertainties are determined by changing the selection cuts and the fit procedure. The geometric acceptance of the detector and the selection efficiency are estimated thanks to simulated data. The differences observed on the control samples from data allow to correct the simulation. The systematic uncertainty associated to this correction is estimated by varying the control samples. In total, at 100 GeV (resp. 700 GeV), the statistic uncertainty of the lepton flux is 2% (30%) and the systematic uncertainty is 3% (40%). As the flux generally follows a power law as a function of energy, it is important to control the energy calibration. We have controlled in-situ the measurement of energy in the ECAL by comparing the electrons from flight data and from test beams, using in particular the E/p variable where p is momentum measured by the tracker. A second method of absolute calibration at low energy, independent from the tracker, is developed based on the geomagnetic cutoff effect. Two models of geomagnetic cutoff prediction, the Störmer approximation and the IGRF model, have been tested and compared. These two methods allow to control the energy calibration to a precision of 2% and to verify the stability of the ECAL performance with time

Книги з теми "Cosmic rays Measurement":

1

Keane, Anthony J. Measurement of the charge spectrum of ultra heavy galactic cosmic rays with Z>70. Dublin: University College Dublin, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Workshop on Balloon-Borne Experiment With a Superconducting Magnet Spectrometer (6th 1996 KEK). Proceedings of the 6th Workshop on Balloon-Borne Experiment with a Superconducting Magnet Spectrometer: Held at National Laboratory for High Energy Physics (KEK), Jan., 29-31, 1996. Oho, Tsukuba-shi, Ibaraki-ken, Japan: Natinal Laboratory for High Energy Physics, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhou, Dazhuang. CR-39 plastic nuclear track detectors in physics research. Hauppauge, N.Y: Nova Science Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boscherini, Massimo. The Time-of-Flight counter for the PAMELA experiment in space: Design, development, construction and qualification. Münster: Verlagshaus Monsenstein und Vannerdat, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mottram, Matthew Joseph. A Search for Ultra-High Energy Neutrinos and Cosmic-Rays with ANITA-2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gregory, J. C. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per amu: Semiannual report. [Huntsville, Ala.]: University of Alabama in Huntsville, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hohlmann, Marcus. Test der Vorwärts-Spurkammern des H1 Detektors mit kosmischen Teilchen. Aachen: Physikalische Institute RWTH Aachen, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abunina, Maria, Rolf Bütikofer, Karl-Ludwig Klein, Olga Kryakunova, Monica Laurenza, David Ruffolo, Danislav Sapundjiev, Christian T. Steigies, and Ilya Usoskin, eds. NMDB@Home 2020. Kiel: Universitätsverlag Kiel | Kiel University Publishing, 2021. http://dx.doi.org/10.38072/2748-3150/v1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the 'Proceedings of the 1st virtual symposium on cosmic ray studies with neutron detectors' launches the new open access series 'Cosmic ray studies with neutron detectors'. The volume comprises the papers presented at the online meeting held in July 2020. The contributions show that neutron detectors on the ground provide significant results for studying the interaction of galactic cosmic rays with magnetic fields in the heliosphere, for accelerating energetic particles, and for a growing number of applications, including geophysics and space weather. The easily accessible databases around the project 'Real-Time database for high resolution Neutron Monitor measurements' (NMDB) make the original data readily available to a large user community.
9

Nakamura, Takashi. Dosimetry and spectrometry of cosmic-ray neutrons in aircraft: DOSCONA experiment. Chiba: National Institute of Radiological Sciences, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Flynn, George. "Trace element abundance measurements on cosmic dust particles": Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cosmic rays Measurement":

1

Hofmann, W., and J. A. Hinton. "Cosmic Particle Accelerators." In Particle Physics Reference Library, 827–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn the century since the measurements of Victor Hess [1]—considered as the discovery of cosmic rays—the properties of cosmic rays, as they arrive on Earth, have been studied in remarkable detail; we know their energy spectrum, extending to 1020 eV, their elemental composition, their angular distribution, and we understand the basic energetic requirements of cosmic ray production in the Galaxy.
2

Lesko, K. T., E. B. Norman, R. M. Larimer, and S. G. Crane. "Measurements of Cross Sections Relevant to γ-Ray Line Astronomy." In Genesis and Propagation of Cosmic Rays, 375–79. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-4025-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zilles, Anne. "Going to Extreme Precision Measurements: Detecting Cosmic Rays with SKA1-Low." In Emission of Radio Waves in Particle Showers, 89–127. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63411-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ney, E. P., and J. R. Winckler. "High Altitude Cosmic-Ray Measurements During the International Geophysical Year." In Geophysics and the IGY: Proceedings of the Symposium at the Opening of the International Geophysical Year, 81–91. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm002p0081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Roy, S., R. P. Adak, R. Biswas, D. Nag, D. Paul, S. Rudra, S. Biswas, and S. Das. "Measurement of Angular Variation of Cosmic Ray Intensity with Plastic Scintillator Detector." In Springer Proceedings in Physics, 199–204. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7665-7_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Neher, H. V., and S. E. Forbush. "Correlation of cosmic-ray ionization measurements at high altitudes, at sea level, and neutron intensities at mountain tops." In Cosmic Rays, the Sun and Geomagnetism: The Works of Scott E. Forbush, 181–82. Washington, D. C.: American Geophysical Union, 1993. http://dx.doi.org/10.1029/sp037p0181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wiegel, B., T. Ohrndorf, and W. Heinrich. "Measurements of Cosmic Ray LET-Spectra for the D1 Mission Using Plastic Nuclear Track Detectors." In Terrestrial Space Radiation and Its Biological Effects, 795–807. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Slayman, Charles. "JEDEC Standards on Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray Induced Soft Errors." In Soft Errors in Modern Electronic Systems, 55–76. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6993-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dorman, Lev I. "Theory of Cosmic Ray Meteorological Effects for Measurements in the Atmosphere and Underground (One-Dimensional Approximation)." In Astrophysics and Space Science Library, 289–330. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2113-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Venkatesan, D., R. B. Decker, and S. M. Krimigis. "Measurement of Radial and Latitudinal Gradients of Cosmic Ray Intensity During the Decreasing Phase of Sunspot Cycle 21." In Astrophysics and Space Science Library, 389–94. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4612-5_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cosmic rays Measurement":

1

AbuZayyad, Tareq. "TALE FD Cosmic Rays Composition Measurement." In 36th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.358.0169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ridky, Jan. "Measurement of Cosmic Ray Energy with the Pierre Auger Observatory." In C2CR07: COLLIDERS TO COSMIC RAYS. AIP, 2007. http://dx.doi.org/10.1063/1.2775894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fleischhack, Henrike. "Measurement of the Iron Spectrum in Cosmic Rays with VERITAS." In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ma, PengXiong, Margherita Di Santo, ZhiHui Xu, and Yongjie Zhang. "Charge measurement of cosmic rays by Plastic Scintillantor Detector of DAMPE." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huang, Jing, M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, S. W. Cui, et al. "Measurement of high energy cosmic rays by the new Tibet hybrid experiment." In 35th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.301.0484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bongi, M. "PAMELA: a satellite experiment for antiparticles measurement in cosmic rays." In 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). IEEE, 2003. http://dx.doi.org/10.1109/nssmic.2003.1351878.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smolek, Karel, Jakub Cermak, Peter Lichard, Michal Nyklicek, Stanislav Pospisil, Petr Pridal, Jaroslav Smejkal, Ivan Stekl, Vladimir Vicha, and Martin Vojik. "Measurement of High Energy Cosmic Rays in the Experiment CZELTA." In 2008 IEEE Nuclear Science Symposium and Medical Imaging conference (2008 NSS/MIC). IEEE, 2008. http://dx.doi.org/10.1109/nssmic.2008.4774529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Salamon, M. H., P. B. Price, and G. Tarle. "Measurement of ultra-heavy cosmic rays at a lunar base." In Physics and Astrophysics from a Lunar Base. AIP, 1990. http://dx.doi.org/10.1063/1.39118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Libo, WU, Mingyang Cui, Dimitrios Kyratzis, Andrea Parenti, and Yifeng Wei. "Towards the measurement of carbon and oxygen spectra in cosmic rays with DAMPE." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Di Sciascio, Giuseppe. "Measurement of (p+He)-induced anisotropy in cosmic rays with ARGO-YBJ." In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0290.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cosmic rays Measurement":

1

Collica, Laura. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1249492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eylander, John, Michael Lewis, Maria Stevens, John Green, and Joshua Fairley. An investigation of the feasibility of assimilating COSMOS soil moisture into GeoWATCH. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This project objective evaluated the potential of improving linked weather-and-mobility model predictions by blending soil moisture observations from a Cosmic-ray Soil Moisture Observing System (COSMOS) sensor with weather-informed predictions of soil moisture and soil strength from the Geospatial Weather-Affected Terrain Conditions and Hazards (GeoWATCH). Assimilating vehicle-borne COSMOS observations that measure local effects model predictions of soil moisture offered potential to produce more accurate soil strength and vehicle mobility forecast was the hypothesis. This project compared soil moisture observations from a COSMOS mobile sensor driven around an area near Iowa Falls, IA, with both GeoWATCH soil moisture predictions and in situ probe observations. The evaluation of the COSMOS rover data finds that the soil moisture measurements contain a low measurement bias while the GeoWATCH estimates more closely matched the in situ data. The COSMOS rover captured a larger dynamic range of soil moisture conditions as compared to GeoWATCH, capturing both very wet and very dry soil conditions, which may better flag areas of high risk for mobility considerations. Overall, more study of the COSMOS rover is needed to better understand sensor performance in a variety of soil conditions to determine the feasibility of assimilating the COSMOS rover estimates into GeoWATCH.
3

McIntosh, Gordon. Cosmic Ray Measurements A Proposed, Collaborative, Balloon Based Experiment. Ames (Iowa): Iowa State University. Library. Digital Press, January 2012. http://dx.doi.org/10.31274/ahac.8340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Celmins, Aivars. Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada223355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Verbeke, J. M., N. J. Snyderman, and L. F. Nakae. Comparison between Neutron Counting Experimental Measurements and Simulations: Cosmic Ray Contribution. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/1113922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hocker, Andy, Paul Rubinov, Doug Glenzinski, Sten Hansen, Julie Whitmore, Craig Dukes, Craig Group, Yuriy Oksuzian, Martin Frank, and Ralf Ehrlich. T-1043: Measurements of Photoelectron Yields for Prototype Mu2e Cosmic Ray Veto Scintillation Counters. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1128251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії